Article

Strategies for healthy weight loss: from vitamin C to the glycemic response.

Department of Nutrition, Arizona State University East, 7001 E. Williams Field Rd., Mesa, AZ 85212, USA.
Journal of the American College of Nutrition (Impact Factor: 1.68). 07/2005; 24(3):158-65. DOI: 10.1080/07315724.2005.10719460
Source: PubMed

ABSTRACT America is experiencing a major obesity epidemic. The ramifications of this epidemic are immense since obesity is associated with chronic metabolic abnormalities such as insulin resistance, dyslipidemia, and heart disease. Reduced physical activity and/or increased energy intakes are important factors in this epidemic. Additionally, a genetic susceptibility to obesity is associated with gene polymorphisms affecting biochemical pathways that regulate fat oxidation, energy expenditure, or energy intake. However, these pathways are also impacted by specific foods and nutrients. Vitamin C status is inversely related to body mass. Individuals with adequate vitamin C status oxidize 30% more fat during a moderate exercise bout than individuals with low vitamin C status; thus, vitamin C depleted individuals may be more resistant to fat mass loss. Food choices can impact post-meal satiety and hunger. High-protein foods promote postprandial thermogenesis and greater satiety as compared to high-carbohydrate, low-fat foods; thus, diet regimens high in protein foods may improve diet compliance and diet effectiveness. Vinegar and peanut ingestion can reduce the glycemic effect of a meal, a phenomenon that has been related to satiety and reduced food consumption. Thus, the effectiveness of regular exercise and a prudent diet for weight loss may be enhanced by attention to specific diet details.

4 Followers
 · 
223 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compared the effects of consuming a 2-day low-carbohydrate (CHO) diet (low-CHO; 20% CHO, 40% protein, 40% fat) versus an isocaloric 2-day moderate-CHO diet (mod-CHO; 55% CHO, 15% protein, 30% fat) on substrate oxidation during and after exercise in ten active, young women. Subjects were 24.9 ± 6.2% body fat with a VO(2max) of 68.8 ± 13.8 ml/kg FFM/min. For 2 days prior to exercise, subjects consumed either the mod-CHO or the low-CHO diet and then completed treadmill exercise at 55% of VO(2max) until 350 kcal of energy was expended. During exercise and for 2 h post-exercise, expired gases were analyzed to determine oxidation rates for CHO (CHO-OX) and fat (FAT-OX). Significant differences (p < 0.05) were found between diets for CHO-OX and FAT-OX (mg/kg FFM/min) during exercise, 1 h post-ex, and 2 h post-ex. During exercise, FAT-OX was higher (low-CHO 8.7 ± 2.2 vs. mod-CHO 6.2 ± 2.2) and CHO-OX was lower (low-CHO 25.1 ± 5.6 vs. mod-CHO 31.1 ± 6.2) following the low-CHO diet. A similar trend was observed during 1 h post-ex for FAT-OX (low-CHO 2.2 ± 0.5 vs. mod-CHO 1.6 ± 0.5) and CHO-OX (low-CHO 2.5 ± 1.2 vs. mod-CHO 4.1 ± 1.9), as well as 2 h post-ex for FAT-OX (low-CHO vs. 1.9 ± 0.5 mod-CHO 1.7 ± 0.4) and CHO-OX (low-CHO 2.5 ± 0.9 vs. mod-CHO 3.1 ± 1.1). Significant positive correlations were observed between VO(2max) and CHO-OX during exercise and post-exercise, as well as significant negative correlations between VO(2max) and FAT-OX post-exercise in the low-CHO condition. Waist circumference and FAT-OX exhibited a significant negative correlation during exercise in the low-CHO condition. Dietary macronutrient intake influenced substrate oxidation in active young women during and after moderate intensity exercise.
    Arbeitsphysiologie 04/2011; 111(12):3143-50. DOI:10.1007/s00421-011-1950-z · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antioxidant-based treatments are emerging as an interesting approach to possibly counteract obesity fat accumulation complications, since this is accompanied by an increased systemic oxidative stress. The aim of this study was to analyze specific metabolic effects of vitamin C (VC) on epididymal primary rat adipocytes. Cells were isolated and incubated for 72 h in culture medium, in the absence or presence of 1.6 nM insulin, within a range of VC concentrations (5-1000 microM). Glucose- and lipid-related variables as well as the secretion/expression patterns of several obesity-related genes were assessed. It was observed that VC dose dependently inhibited glucose uptake and lactate production, and also reduced glycerol release in both control and insulin-treated cells. Also, VC caused a dramatic concentration-dependent fall in leptin secretion especially in insulin-stimulated cells. In addition, VC (200 microM) induced Cdkn1a and Casp8, partially inhibited Irs3, and together with insulin drastically reduced Gpdh (listed as Gpd1 in the MGI database) gene expressions. Finally, VC and insulin down-regulatory effects were observed on extracellular and intracellular reactive oxygen species production respectively. In summary, this experimental assay describes a specific effect of VC in isolated rat adipocytes on glucose and fat metabolism, and on the secretion/expression of important obesity-related proteins.
    Journal of Molecular Endocrinology 07/2010; 45(1):33-43. DOI:10.1677/JME-09-0160 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To analyse the effects of vitamin C (VC), a potent dietary antioxidant, oral supplementation on body weight gain, behavioural activity, lipolytic response and glucocorticoid metabolism in the early stages of diet-induced overweight in rats. Food intake, locomotive activity and faecal corticosterone were assessed during the 14 day trial period. After 2 weeks, the animals were sacrificed and the body composition, biochemical markers and lipolytic response from isolated adipocytes from retroperitoneal white adipose tissue were examined. The intake of a high-fat diet by rats induced a significant increase in body weight, adiposity and insulin resistance markers as well as a decrease in faecal corticosterone levels compared with standard diet-fed rats. Interestingly, the animals fed on the cafeteria diet showed a significant increase in the isoproterenol-induced lipolytic response in isolated adipocytes. Furthermore, this cafeteria-fed group showed a reduced locomotive behaviour than the control rats. On the other hand, oral VC supplementation in animals receiving the high-fat diet restored the cafeteria diet effect in some of the analysed variables such as final body weight and plasma insulin to control group levels. Remarkably, increases in locomotive behaviour and a significant decrease in the lipolytic response induced by isoproterenol on isolated adipocytes from animals treated with VC were observed. This work demonstrates that an oral ascorbic acid supplementation has direct effects on behavioural activity and on adipocyte lipolysis in early obesity stages in rats, which could indicate a protective short-term role of this vitamin against adiposity induced by chronic high-fat diet consumption.
    Acta Physiologica 12/2008; 195(4):449-57. DOI:10.1111/j.1748-1716.2008.01942.x · 4.25 Impact Factor

Preview

Download
21 Downloads
Available from