Article

Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine.

The Institute of Environmental and Human Health and Department of Environmental Toxicology, Texas Tech University, PO Box 41163, Lubbock, TX 79409-1163, USA.
Carcinogenesis (Impact Factor: 5.27). 02/2006; 27(2):262-8. DOI: 10.1093/carcin/bgi147
Source: PubMed

ABSTRACT Modulation of urinary excretion of green tea polyphenols (GTPs) and oxidative DNA damage biomarker, 8-hydroxydeoxyguanosine (8-OHdG), were assessed in urine samples collected from a randomized, double-blinded and placebo-controlled phase IIa chemoprevention trial with GTP in 124 individuals. These individuals were sero-positive for both HBsAg and aflatoxin-albumin adducts, and took GTP capsules daily at doses of 500 mg, 1000 mg or a placebo for 3 months. Twenty-four hour urine samples were collected before the intervention and at the first and third month of the study. Urinary excretion of 8-OHdG and GTP components was measured by HPLC-CoulArray electrochemical detection. The baseline levels of 8-OHdG and GTP components among the three groups showed homogeneity (P > 0.70), and a non-significant fluctuation was observed in the placebo group over the 3 months (P > 0.30). In GTP-treated groups, epigallocatechin (EGC) and epicatechin (EC) levels displayed significant and dose-dependent increases in both the 500 mg group and 1000 mg group (P < 0.05). The 8-OHdG levels did not differ between the three groups at the 1 month collection, with medians of 1.83, 2.08 and 1.86 ng/mg-creatinine for placebo, 500 and 1000 mg group, respectively (P = 0.999). At the end of the 3 months' intervention, 8-OHdG levels decreased significantly in both GTP-treated groups, with medians of 2.02, 1.03 and 1.15 ng/mg-creatinine for placebo, 500 mg and 1000 mg group, respectively (P = 0.007). These results suggest that urinary excretions of EGC and EC can serve as practical biomarkers for green tea consumption in human populations. The results also suggest that chemoprevention with GTP is effective in diminishing oxidative DNA damage.

Full-text

Available from: Lili Tang, May 23, 2015
0 Followers
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blessed milk thistle (Silybum marianum L.), a flowering plant native to Mediterranean Europe, has been consumed and extensively used as a cure for various chronic liver ailments over several centuries. Milk thistle extract, known as silymarin, is a complex mixture of seven major flavonolignans and one flavonoid. The phytoconstituents of silymarin owe their therapeutic and hepatoprotective effects to their strong antioxidant and anti-inflammatory properties. Primary liver cancer, also known as hepatocellular carcinoma (HCC), occurs in a milieu of oxidative stress and inflammation. The etiology of HCC includes chronic infection with hepatitis B and C viruses, cirrhosis, and exposure to dietary and environmental hepatocarcinogens. Current therapeutic options for HCC, including surgical resection and liver transplantation, have limited benefits and are essentially ineffective. Chemoprevention, using phytochemicals with potent antioxidant and anti-inflammatory properties, represents a fascinating strategy, which has been a subject of intense investigation in the recent years. In this review, we explore the potential role of silymarin as a chemopreventive and therapeutic agent for HCC. The review systematically evaluates the preclinical in-vitro and in-vivo studies investigating the effects of silymarin and its constituents on HCC. The biochemical mechanisms involved in the anti-liver-cancer effects of silymarin have been presented. The current status of clinical studies evaluating the potential of role of silymarin in liver cancer, especially that caused by hepatitis C virus, has also been examined. Potential challenges and future directions of research involved in the 'bench-to-bedside' transition of silymarin phytoconstituents for the chemoprevention and treatment of HCC have also been discussed.
    Anti-Cancer Drugs 01/2015; 26(5). DOI:10.1097/CAD.0000000000000211 · 1.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Tea is derived from the leaf of Camellia sinensis, a natural beverage widely consumed around the world. Geological and botanical evidence suggests that the tea plant originated from China. Varying methods of processing tea leaves lead to green tea, black tea, or Oolong tea, which differ in their concentrations of polyphenols. Green tea polyphenols appear to have anti-tumorigenic properties, and form 30-40% of the dry weight of green tea compared with only 3-10% of black tea. Numerous studies in multiple animal models and different cancer cell lines have demonstrated the anti-tumorigenesis by green tea polyphenols. Despite the consistency of laboratory results, evidence of this effect occuring in humans has been inconclusive to date. Objective: To investigate if green tea consumption was associated with longer survival rates in ovarian cancer patients, and a lower risk of ovarian, breast, and colorectal cancer, in addition to adult leukemia
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Preclinical and epidemiologic studies suggest chemopreventive effects of green tea (GT) and black tea (BT) in prostate cancer. In the current study we determined the effect of GT and BT consumption on biomarkers related to prostate cancer development and progression.Methods In this exploratory, open label, phase II trial 113 men diagnosed with prostate cancer were randomized to consume six cups daily of brewed GT, BT or water (control) prior to radical prostatectomy (RP). The primary endpoint was prostate tumor markers of cancer development and progression determined by tissue immunostaining of proliferation (Ki67), apoptosis (Bcl-2, Bax, Tunel), inflammation (nuclear and cytoplasmic nuclear factor kappa B [NFκB]) and oxidation (8-hydroxydeoxy-guanosine [8OHdG]). Secondary endpoints of urinary oxidation, tea polyphenol uptake in prostate tissue, and serum prostate specific antigen (PSA) were evaluated by high performance liquid chromatography and ELISA analysis.ResultsNinety three patients completed the intervention. There was no significant difference in markers of proliferation, apoptosis and oxidation in RP tissue comparing GT and BT to water control. Nuclear staining of NFκB was significantly decreased in RP tissue of men consuming GT (P = 0.013) but not BT (P = 0.931) compared to water control. Tea polyphenols were detected in prostate tissue from 32 of 34 men consuming GT but not in the other groups. Evidence of a systemic antioxidant effect was observed (reduced urinary 8OHdG) only with GT consumption (P = 0.03). GT, but not BT or water, also led to a small but statistically significant decrease in serum prostate-specific antigen (PSA) levels (P = 0.04).Conclusion Given the GT-induced changes in NFκB and systemic oxidation, and uptake of GT polyphenols in prostate tissue, future longer-term studies are warranted to further examine the role of GT for prostate cancer prevention and treatment, and possibly for other prostate conditions such as prostatitis. Prostate © 2014 Wiley Periodicals, Inc.
    The Prostate 12/2014; 75(5). DOI:10.1002/pros.22943 · 3.57 Impact Factor