Article

Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex.

Structural Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA.
Nature (Impact Factor: 42.35). 07/2005; 435(7042):687-92. DOI: 10.1038/nature03588
Source: PubMed

ABSTRACT SUMO-1 (for small ubiquitin-related modifier) belongs to the ubiquitin (Ub) and ubiquitin-like (Ubl) protein family. SUMO conjugation occurs on specific lysine residues within protein targets, regulating pathways involved in differentiation, apoptosis, the cell cycle and responses to stress by altering protein function through changes in activity or cellular localization or by protecting substrates from ubiquitination. Ub/Ubl conjugation occurs in sequential steps and requires the concerted action of E2 conjugating proteins and E3 ligases. In addition to being a SUMO E3, the nucleoporin Nup358/RanBP2 localizes SUMO-conjugated RanGAP1 to the cytoplasmic face of the nuclear pore complex by means of interactions in a complex that also includes Ubc9, the SUMO E2 conjugating protein. Here we describe the 3.0-A crystal structure of a four-protein complex of Ubc9, a Nup358/RanBP2 E3 ligase domain (IR1-M) and SUMO-1 conjugated to the carboxy-terminal domain of RanGAP1. Structural insights, combined with biochemical and kinetic data obtained with additional substrates, support a model in which Nup358/RanBP2 acts as an E3 by binding both SUMO and Ubc9 to position the SUMO-E2-thioester in an optimal orientation to enhance conjugation.

0 Bookmarks
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Narrow size dispersion ZnTi–layered double hydroxide (LDH) nanosheets with lateral dimensions in the range 40–80 nm have been synthesised using a reverse microemulsion method. Electron Spin Resonance (ESR) and X-ray photoelectron spectroscopy (XPS) measurements reveal that Ti3+ sites are generated within these nanosized LDH platelets. The data show that the concentration of Ti3+ cations in the nanoplatelets is size-dependent, the 40 nm nanoplatelets have a bandgap of ca. 2.3 eV. The combination of photochemcially activity and nanoparticle size results in materials that exhibit high antipathogen activity under visible light. The biocidal efficacies of the LDHs have been investigated under visible light. The ZnTi–LDHs display size-dependent cytotoxicity against S. cerevisiae, S. aureus and E. coli in culture. The 40 nm ZnTi–LDH nanoplatelets (ZnTi–LDH–RM1) are the most potent resulting in 95% cell death. These nanoplatelets are more active compared to a conventionally prepared ZnTi–LDH or the nanoparticulate metal oxides WO3 and TiO2 (P25). The nanosized ZnTi–LDHs severely inhibit the growth of S. cerevisiae, S. aureus and E. coli in culture.
    J. Mater. Chem. B. 11/2013; 1(43).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein modification with ubiquitin chains is an essential signaling event catalyzed by E3 ubiquitin ligases. Most human E3s contain a signature RING domain that recruits a ubiquitin-charged E2 and a separate domain for substrate recognition. How RING-E3s can build polymeric ubiquitin chains while binding substrates and E2s at defined interfaces remains poorly understood. Here, we show that the RING-E3 APC/C catalyzes chain elongation by strongly increasing the affinity of its E2 for the distal acceptor ubiquitin in a growing conjugate. This function of the APC/C requires its coactivator as well as conserved residues of the E2 and ubiquitin. APC/C's ability to track the tip of an emerging conjugate is required for APC/C-substrate degradation and accurate cell division. Our results suggest that RING-E3s tether the distal ubiquitin of a growing chain in proximity to the active site of their E2s, allowing them to assemble polymeric conjugates without altering their binding to substrate or E2.
    Molecular cell. 10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM)-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs). Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs). In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.
    PLoS ONE 08/2014; 9(8):e105271. · 3.53 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
May 16, 2014