Article

Toll-like receptors: linking innate and adaptive immunity.

Howard Hughes Medical Institute, Section of Immunobiology, 300 Cedar Street, TAC S660, Yale University School of Medicine, New Haven, CT 06510, USA.
Advances in Experimental Medicine and Biology (Impact Factor: 2.01). 02/2005; 560:11-8. DOI: 10.1007/0-387-24180-9_2
Source: PubMed

ABSTRACT Work in recent years has shown an essential role for Toll-like receptors (TLRs) in the activation of innate and adaptive immunity in vertebrate animals. These germ-line encoded receptors, expressed on a diverse variety of cells and tissues, recognize conserved molecular products derived from various classes of pathogens, including Gram-positive and -negative bacteria, DNA and RNA viruses, fungi and protozoa. Ligand recognition induces a conserved host defense program, which includes production of inflammatory cytokines, upregulation of costimulatory molecules, and induction of antimicrobial defenses. Importantly, activation of dendritic cells by TLR ligands is necessary for their maturation and consequent ability to initiate adaptive immune responses. How responses are tailored by individual TLRs to contain specific classes of pathogens is not yet clear.

0 Bookmarks
 · 
261 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autologous dendritic cells (DCs) loaded with tumorassociated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumorderived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients.
    Human Vaccines and Therapeutics 01/2015; 10(11):3261-3269. DOI:10.4161/21645515.2014.982996 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Models of microbe-elicited peritonitis have been invaluable to identify mechanisms underlying inflammation resolution, but whether resolution mechanisms differ from an inflammatory agent to another has not been determined. Thus, we analyzed the cellular and molecular components of the resolution phase of non-microbe-induced inflammation. In thioglycollate (TG)-induced peritonitis, resolution started at 12 h (Tmax) and displayed a 22 h resolution interval (Ri). During resolution, lipoxin A4, resolvin (Rv) D1 and RvD2, protectin D1 (PD1), and maresin 1 (MaR1) were transiently produced while RvD5 was continually generated. In addition, docosahexaenoic acid (DHA)-derived mediators were produced to a higher extent than in microbial peritonitis. We also investigated leukocyte infiltration and clearance in peritoneal tissues surrounding the inflammatory site. In the omentum, resolution parameters, neutrophil apoptosis, and efferocytosis were similar to those of the peritoneal cavity. However, we noticed long-term persistence of M2-polarized macrophages and B-lymphocytes in the omentum after TG administration, whereas zymosan injection caused M1/M2-macrophage and T-lymphocyte persistence regardless of the magnitude of the inflammatory response. Our study indicates that some aspects of resolution are shaped in a stimulus-specific manner, and it ultimately argues that the tissues surrounding the inflammatory site must also be considered to address the inflammatory response globally.-Lastrucci, C., Baillif, V., Behar, A., Al Saati, T., Dubourdeau, M., Maridonneau-Parini, I., and Cougoule, C. Molecular and cellular profiles of the resolution phase in a damage-associated molecular pattern-mediated peritonitis model and revelation of leukocyte persistence in peritoneal tissues. © FASEB.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonconventional innate memory CD8(+) T cells characteristically expressing CD44, CD122, eomesodermin (Eomes) and promyelocytic leukemia zinc finger (PLZF) were derived in culture from CD4(+)CD8(+) double positive (DP) thymocytes of normal BALB/c and C57BL/6 mice. These culture-differentiated cells constitutively express toll-like receptor (TLR)4 and release interferon (IFN)-γ and interleukin (IL)-10. We show the TLR4-ligand lipopolysaccharide (LPS) stimulate the TLR and up-regulate IFN-γ skewing the cells towards type 1 polarization. In presence of LPS these cells also express suppressor of cytokine signaling (SOCS)1 and thus suppress IL-10 expression. In contrast, heat shock protein (Hsp)70 down-regulated TLR4 augmenting the anti-inflammatory cytokine IL-10. In association with IL-10 release IFN-γ was abrogated. The programmed cell death (PD)-1 mostly present in regulatory T cells was stimulated in these IL-10 producing cells by Hsp70 and not LPS indicating the cells can be driven to two contrast outcomes by the two TLR4 ligands. Our work provides a scope for in vitro monitoring of CD8(+) T cells to decipher important immune therapeutic option during infection or sepsis. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Cytokine 02/2015; 73(1):44-52. DOI:10.1016/j.cyto.2015.01.018 · 2.87 Impact Factor