Article

Pre-injury administration of morphine prevents development of neuropathic hyperalgesia through activation of descending monoaminergic mechanisms in the spinal cord in mice.

Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan.
Molecular Pain (Impact Factor: 3.77). 02/2005; 1:19. DOI: 10.1186/1744-8069-1-19
Source: PubMed

ABSTRACT The present study examined whether pre-injury administration of morphine can prevent partial sciatic nerve injury-induced neuropathic pain in mice. We observed that pre-injury administration of subcutaneous (s.c.) and intracerebroventricular (i.c.v.) morphine dose-dependently prevented the development of both thermal and mechanical hyperalgesia at 7 days following nerve injury in mice. The pre-injury morphine (s.c.)-induced analgesia was significantly blocked by pretreatment with naloxone injected s.c. or i.c.v., but not i.t., suggesting that systemic morphine produced the pre-emptying effects mainly by acting at the supra-spinal sites. Since it is believed that activation of descending monoaminergic mechanisms in spinal cord largely contributes to the supra-spinal analgesic effects of morphine, we investigated the involvement of serotonergic and noradrenergic mechanisms in spinal cord in the pre-injury morphine-induced analgesic effects. We found that pre-injury s.c. morphine-induced analgesic effect was significantly blocked by i.t. pretreatment with serotonergic antagonist, methysergide and noradrenergic antagonist, phentolamine. In addition, pre-injury i.t. injection of serotonin uptake inhibitor, fluoxetine and alpha2-adrenergic agonist, clonidine significantly prevented the neuropathic hyperalgesia. We next examined whether pre-injury morphine prevented the expression of neuronal hyperactivity markers such as c-Fos and protein kinase C gamma (PKCgamma) in the spinal dorsal horn. We found that pre-injury administration of s.c. morphine prevented increased expressions of both c-Fos and PKCgamma observed following nerve injury. Similar results were obtained with i.t. fluoxetine and clonidine. Altogether these results suggest that pre-injury administration of morphine might prevent the development of neuropathic pain through activation of descending monoaminergic pain inhibitory pathways.

0 Bookmarks
 · 
50 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that lysophosphatidic acid (LPA) production in the spinal cord following partial sciatic nerve injury (SCNI) and its signaling initiate neuropathic pain. In order to examine whether LPA production depends on the intense nociceptive signal, we have attempted to see suppression by pre-emptive treatment with centrally administered morphine, which mainly inhibits nociceptive signal at the level of spinal cord. In the present study, we developed a quantitative mass spectrometry assay to simultaneously analyze several species of lysophosphatidyl choline (LPC). The levels of 16:0-, 18:0- and 18:1-LPC in the spinal cord and dorsal root were maximally increased at 75 min after SCNI and then declined, as LPC is converted to LPA by autotaxin (ATX). In atx(+/-)-mice, on the other hand, these levels were similar to wild-type mice at 75 min, but maximal at 120 min, suggesting that this difference is partly due to the low conversion of LPC to LPA in atx(+/-)-mice. When morphine was centrally administered before SCNI, the injury-induced increase of LPC was completely abolished. These results suggest that LPC (or LPA) is produced by injury-induced nociceptive signal, which is effectively and pre-emptively suppressed by central morphine, possibly through known descending anti-nociceptive pathways.
    Journal of Neurochemistry 05/2011; 118(2):256-65. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Citalopram, a selective serotonin reuptake inhibitor (SSRI), is frequently used in the treatment of major depressive disorders. In addition to its antidepressant features, citalopram shows some anticonvulsive properties at lower doses, whereas higher doses, ingested in cases of suicide, have been associated with seizures. Moreover, some reports support the enhancing effect of morphine on different responses of SSRIs such as analgesic and anticonvulsant properties. Although the exact mechanisms of these additive effects are not yet fully understood, 5-HT(3) receptor has recently been shown to play an important role in the central effects of SSRIs and morphine. In this regard, we used a model of clonic seizures induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether morphine and citalopram exhibit additive anticonvulsant effects and, if so, whether this effect is mediated through modulation of 5-HT(3) receptors. In our study, citalopram at lower doses (0.5 and 1 mg/kg, ip) significantly increased the seizure threshold (P<0.01) and at a higher dose (50 mg/kg) had proconvulsive effects. Moreover, morphine at low and noneffective doses had additive effects on the anticonvulsive properties of citalopram. This additive effect was prevented by pretreatment with low and noneffective doses of tropisetron (a 5-HT(3) receptor antagonist) and augmented by 1-(m-chlorophenyl)-biguanide (mCPBG, a 5-HT(3) receptor agonist). Moreover, low doses of morphine (0.1 and 0.5 mg/kg) alone or in combination with potent doses of 5-HT(3) receptor agonist or antagonist could not alter the proconvulsive properties of citalopram at higher dose (50 mg/kg), ruling out the contribution of 5-HT(3) to this effect. In summary, our findings demonstrate that 5-HT(3) receptor mediates the additive anticonvulsant properties of morphine and low-dose citalopram. This could constitute a new approach to augmenting the efficacy and curtailing the adverse effects of citalopram.
    Epilepsy & Behavior 06/2011; 21(2):122-7. · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the spinal cord, PKCγ is an important kinase found in a specific subset of excitatory interneurons in the superficial dorsal horn and in axons of the corticospinal tract (CST). The major interest in spinal PKCγ has been its influences on regulating pain sensitivity but its presence in the CST also indicates that it has a significant role in locomotor function. A hallmark feature of the animal model commonly used to study Multiple Sclerosis, experimental autoimmune encephalolomyelitis (EAE) are motor impairments associated with the disease. More recently, it has also become recognized that EAE is associated with significant changes in pain sensitivity. Given its role in generating pain hypersensitivity and its presence in a major tract controlling motor activity, we set out to characterize whether EAE was associated with changes PKCγ levels in the spinal cord. We show here that EAE triggers a significant reduction in the levels of PKCγ, primarily in the CST. We did not observe any significant changes in PKCγ levels in the superficial dorsal horn but in general the levels tended to be below control levels in this region. In a final experiment we assessed the levels of PKCγ in the spinal cord of EAE mice that had recovered gross locomotor function and compared this to the levels found in EAE mice with chronic deficits. Our findings demonstrate that PKCγ levels are dynamic and that in later stages of the disease, its expression is dependent on the degree of motor function in the model. Taken together these results suggest that PKCγ may be a useful marker in the disease to monitor the status of the CST.
    Journal of neuroimmunology 02/2013; · 2.84 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from