Article

Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding.

York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451, USA.
Journal of Molecular Biology (Impact Factor: 3.96). 08/2005; 350(2):189-99. DOI: 10.1016/j.jmb.2005.04.073
Source: PubMed

ABSTRACT Transfer RNAs are transcribed as precursors with extensions at both the 5' and 3' ends. RNase P removes endonucleolytically the 5' end leader. tRNase Z can remove endonucleolytically the 3' end trailer as a necessary step in tRNA maturation. CCA is not transcriptionally encoded in the tRNAs of eukaryotes, archaebacteria and some bacteria and must be added by a CCA-adding enzyme after removal of the 3' end trailer. tRNase Z is a member of the beta-lactamase family of metal-dependent hydrolases, the signature sequence of which, the conserved histidine cluster (HxHxDH), is essential for activity. Starting with baculovirus-expressed fruit fly tRNase Z, we completed an 18 residue Ala scan of the His cluster to analyze the functional landscape of this critical region. Residues in and around the His cluster fall into three categories based on effects of the substitutions on processing efficiency: substitutions in eight residues have little effect, five substitutions reduce efficiency moderately (approximately 5-50-fold), while substitutions in five conserved residues, one serine, three histidine and one aspartate, severely reduce efficiency (approximately 500-5000-fold). Wild-type and mutant dissociation constants (Kd values), determined using gel shifts, displayed no substantial differences, and were of the same order as kM (2-20 nM). Lower processing efficiencies arising from substitutions in the His domain are almost entirely due to reduced kcat values; conserved, functionally important residues within the His cluster of tRNase Z are thus involved in catalysis, and substrate recognition and binding functions must reside elsewhere in the protein.

2 Followers
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In most organisms, tRNase Z is considered to be essential for 3' processing of tRNA molecules. The Escherichia coli tRNase Z gene, however, appears to be dispensable under normal growth conditions, and its existence remained an enigma. Here we intensively examined various (pre-)tRNAs for good substrates of E. coli tRNase Z in vitro, and found that the enzyme can remove the 3' terminal CCA residues from mature tRNAs regardless of their nucleotide modifications. Furthermore, we discovered that E. coli tRNase Z, when sufficiently expressed in the cell, can shut down growth probably by removing amino acids from aminoacyl-tRNAs. We confirmed in vitro that E. coli tRNase Z exceptionally possesses the activity that cleaves off the 3' terminal residues charging an amino acid from an aminoacyl-tRNA molecule. The current data suggest that tRNase Z might help modulate a cell growth rate by repressing translation under some stressful conditions.
    Genes to Cells 10/2008; 13(11):1087-97. DOI:10.1111/j.1365-2443.2008.01230.x · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: tRNase Z, which can endonucleolytically remove pre-tRNA 3'-end trailers, possesses the signature His domain (HxHxDH; Motif II) of the beta-lactamase family of metal-dependent hydrolases. Motif II combines with Motifs III-V on its carboxy side to coordinate two divalent metal ions, constituting the catalytic core. The PxKxRN loop and Motif I on the amino side of Motif II have been suggested to modulate tRNase Z activity, including the anti-determinant effect of CCA in mature tRNA. Ala walks through these two homology blocks reveal residues in which the substitutions unexpectedly reduce catalytic efficiency. While substitutions in Motif II can drastically affect k(cat) without affecting k(M), five- to 15-fold increases in k(M) are observed with substitutions in several conserved residues in the PxKxRN loop and Motif I. These increases in k(M) suggest a model for substrate binding. Expressed tRNase Z processes mature tRNA with CCA at the 3' end approximately 80 times less efficiently than a pre-tRNA possessing natural sequence of the 3'-end trailer, due to reduced k(cat) with no effect on k(M), showing the CCA anti-determinant to be a characteristic of this enzyme.
    RNA 07/2006; 12(6):1104-15. DOI:10.1261/rna.4206 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thermotoga maritima tRNase Z cleaves pre-tRNAs containing the 74CCA76 sequence precisely after the A76 residue to create the mature 3' termini. Its crystal structure has revealed a four-layer alphabeta/betaalpha sandwich fold that is typically found in the metallo-beta-lactamase superfamily. The well-conserved six histidine and two aspartate residues together with metal ions are assumed to form the tRNase Z catalytic center. Here, we examined tRNase Z variants containing single amino acid substitutions in the catalytic center for pre-tRNA cleavage. Cleavage by each variant in the presence of Mg2+ was hardly detected, although it is bound to pre-tRNA. Surprisingly, however, Mn2+ ions restored the lost Mg2+-dependent activity with two exceptions of the Asp52Ala and His222Ala substitutions, which abolished the activity almost completely. These results provide a piece of evidence that Asp-52 and His-222 directly contribute the proton transfer for the catalysis.
    Nucleic Acids Research 02/2006; 34(13):3811-8. DOI:10.1093/nar/gkl517 · 8.81 Impact Factor