Crystallization and preliminary X-ray analysis of the C-terminal WRKY domain of Arabidopsis thaliana WRKY1 transcription factor.

Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, Peking University, Beijing 100871, P.R. China.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 07/2005; 1750(1):14-6. DOI: 10.1016/j.bbapap.2005.03.013
Source: PubMed

ABSTRACT The C-terminal WRKY domain of Arabidopsis thaliana WRKY1 protein, a transcription factor, was cloned and expressed. The expressed protein was then purified and crystallized. The preliminary X-ray analysis was undertaken. The crystal diffracted to 2.50 A resolution in-house and belongs to space group P2(1) with unit-cell parameters a=64.10 A, b=34.88 A, c=114.72 A, beta=90.49 degrees .

  • [Show abstract] [Hide abstract]
    ABSTRACT: The P10 protein encoded by S10 ORF of Rice black-streaked dwarf virus (RBSDV) was thought to be the component of outer shell of viral particle. In the present study, P10 has an ability for self-interaction as shown by a GAL4 transcription activator-based yeast two-hybrid assay system and further confirmed by in vitro far-Western blot analysis. The domain responsible for P10-P10 self-interaction was mapped to the first 230 amino acids at the N-terminal region of the protein. The oligomerization property of P10 was further investigated using chemical cross-linking with purified recombinant P10 proteins expressed in a baculovirus expression system and glutaraldehyde. Intact P10 recombinants existed predominantly as trimers in solution in the absence of other viral proteins and displayed the oligomeric nature common to all known second-layer protein units of the Reoviridae. A truncated P10 mutant encoding the first 230 N-terminal amino acids lost its ability to form trimers even though dimeric forms were detected during the cross-linking assay. Polyacrylamide gel electrophoresis under reducing or non-reducing conditions suggested that P10 subunits were oligomerized not through intermolecular disulfide bonds, but perhaps through some other type of association, such as hydrophobic or charge interactions.
    Virus Research 08/2007; 127(1):34-42. · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 A resolution has revealed that this domain is composed of a globular structure with five beta strands, forming an antiparallel beta-sheet. A novel zinc-binding site is situated at one end of the beta-sheet, between strands beta4 and beta5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at beta2 and beta3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins.
    Nucleic Acids Research 02/2007; 35(4):1145-54. · 8.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virus-encoding nuclear transcriptional regulators play important roles in the viral life cycle. Most of these proteins exhibit intrinsic transcriptional activation or repression activity, and are involved in the regulation of the expression of virus genome itself or important cellular genes to facilitate viral replication and inhibit antiviral responses. Here, we report that the minor core protein P8 of Rice black-streaked dwarf virus, a dsRNA virus infecting host plants and insects, is targeted to the nucleus of insect and plant cells via its N-terminal 1-40 amino acids and possesses potent active transcriptional repression activity in Bright Yellow-2 tobacco suspension cells. Moreover, P8, like many transcriptional regulatory proteins, is capable of forming homo-dimers within insect cells and in vitro. All these data suggest that P8 is likely to enter the nucleus of host cell and play an important role as a negative transcriptional regulator of host gene expression during the process of virus-host interaction.
    FEBS Letters 06/2007; 581(13):2534-40. · 3.58 Impact Factor