Article

Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon.

Department of Cell and Molecular Biology, Microbiology, Medicinaregatan 9C, 413 90 Göteborg, Sweden.
Journal of Bacteriology (Impact Factor: 3.19). 07/2005; 187(12):4207-13. DOI:10.1128/JB.187.12.4207-4213.2005
Source: PubMed

ABSTRACT Protein carbonylation is an irreversible oxidative modification that increases during organism aging and bacterial growth arrest. We analyzed whether the heat shock regulon has a role in defending Escherichia coli cells against this deleterious modification upon entry into stationary phase. Providing the cell with ectopically elevated levels of the heat shock transcription factor, sigma32, effectively reduced stasis-induced carbonylation. Separate overproduction of the major chaperone systems, DnaK/DnaJ and GroEL/GroES, established that the former of these is more important in counteracting protein carbonylation. Deletion of the heat shock proteases Lon and HslVU enhanced carbonylation whereas a clpP deletion alone had no effect. However, ClpP appears to have a role in reducing protein carbonyls in cells lacking Lon and HslVU. Proteomic immunodetection of carbonylated proteins in the wild-type, lon, and hslVU strains demonstrated that the same spectrum of proteins displayed a higher load of carbonyl groups in the lon and hslVU mutants. These proteins included the beta-subunit of RNA polymerase, elongation factors Tu and G, the E1 subunit of the pyruvate dehydrogenase complex, isocitrate dehydrogenase, 6-phosphogluconate dehydrogenase, and serine hydroxymethyltranferase.

0 0
 · 
0 Bookmarks
 · 
43 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the functional and genomic levels. Genome-wide mutations rates and biosynthetic capacity were monitored in real time, in single Escherichia coli cells with identical levels of reactive oxygen species and oxidative DNA damage, but with different levels of irreversible oxidative proteome damage (carbonylation). Increased protein carbonylation correlates with a mutator phenotype, whereas reducing it below wild type level produces an anti-mutator phenotype identifying proteome damage as the leading cause of spontaneous mutations. Proteome oxidation elevates also UV-light induced mutagenesis and impairs cellular biosynthesis. In conclusion, protein damage reduces the efficacy and precision of vital cellular processes resulting in high mutation rates and functional degeneracy akin to cellular aging.
    PLoS Genetics 09/2013; 9(9):e1003810. · 8.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli.
    Current Genomics 09/2013; 14(6):378-87. · 2.48 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Detection and quantification of protein carbonyls present in biological samples has become a popular, albeit indirect, method to determine the existence of oxidative stress. Moreover, the rise of proteomics has allowed the identification of the specific proteins targeted by protein carbonylation. This review discusses these methodologies and proteomic strategies and then focuses on the relationship between protein carbonylation and aging and the parameters that may explain the increased sensitivity of certain proteins to protein carbonylation. © 2013 Wiley Periodicals, Inc. Mass Spec Rev.
    Mass Spectrometry Reviews 09/2013; · 7.74 Impact Factor

Full-text

View
0 Downloads
Available from

Asa Fredriksson