Article

CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension.

Department of Biomedical Engineering, Biomaterials, Cell and Tissue Engineering Laboratory, Case Western Reserve University, Cleveland, OH 44106-7207, USA.
Molecular and Cellular Neuroscience (Impact Factor: 3.73). 09/2005; 29(4):545-58. DOI: 10.1016/j.mcn.2005.04.006
Source: PubMed

ABSTRACT The precise contribution of different CS-GAGs to CSPG-mediated inhibition of axonal growth after CNS injury is unknown. Quantification of the CS-GAGs in uninjured and injured brain (scar tissue) using fluorophore-assisted carbohydrate electrophoresis (FACE) demonstrated that the dominant CS-GAG in the uninjured brain is CS-4 whereas, in glial scar, CS-2, CS-6, and CS-4,6 were over-expressed. To determine if the pattern of sulfation influenced neurite extension, we compared the effects of CS-GAGs with dominant CS-4, CS-6, or CS-4,6 sulfation to intact CSPG (aggrecan), chondroitin (CS-0), and hyaluronan on chick DRG neurite outgrowth. We report that CS-4,6 GAG, one of the upregulated CS-GAGs in astroglial scar, is potently inhibitory and is comparable to intact aggrecan, a CSPG with known inhibitory properties. Thus, a specific CS-GAG that is differentially over-expressed in astroglial scar is a potent inhibitor of neurite extension. These results may influence the design of more specific strategies to enhance CNS regeneration after injury.

Download full-text

Full-text

Available from: Ryan Gilbert, Jul 07, 2015
0 Followers
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes react to CNS injury by building a dense wall of filamentous processes around the lesion. Stromal cells quickly take up residence in the lesion core and synthesize connective tissue elements that contribute to fibrosis. Oligodendrocyte precursor cells proliferate within the lesion and help to entrap dystrophic axon tips. Here we review evidence that this aggregate scar acts as the major barrier to regeneration of axons after injury. We also consider several exciting new interventions that allow axons to regenerate beyond the glial scar, and discuss the implications of this work for the future of regeneration biology.
    Experimental Neurology 01/2014; 253. DOI:10.1016/j.expneurol.2013.12.024 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After spinal cord injury (SCi), re-establishing functional circuitry in the damaged central nervous system (CNS) faces multiple challenges including lost tissue volume, insufficient intrinsic growth capacity of adult neurons, and the inhibitory environment in the damaged CNS. Several treatment strategies have been developed over the past three decades, but successful restoration of sensory and motor functions will probably require a combination of approaches to address different aspects of the problem. Degradation of the chondroitin sulfate proteoglycans with the chondroitinase ABC (ChABC) enzyme removes a regeneration barrier from the glial scar and increases plasticity in the CNS by removing perineuronal nets. its mechanism of action does not clash or overlap with most of the other treatment strategies, making ChABC an attractive candidate as a combinational partner with other methods. in this article, we review studies in rat SCi models using ChABC combined with other treatments including cell implantation, growth factors, myelin-inhibitory molecule blockers, and ion channel expression. We discuss possible ways to optimize treatment protocols for future combinational studies. To date, combinational therapies with ChABC have shown synergistic effects with several other strategies in enhancing functional recovery after SCi. These combinatorial approaches can now be developed for clinical application.
    Neuroscience Bulletin 07/2013; 29(4). DOI:10.1007/s12264-013-1359-2 · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal axons and their growth cones recognize molecular guidance cues within the local environment, forming axonal pathways to produce precise neuronal networks during nervous system development. Chondroitin sulfates (CS), carbohydrate chains on chondroitin sulfate proteoglycans, exhibit great structural diversity and exert various influences on axons and growth cones as guidance cues or their modulators; however, the relationship between their structural diversity and function in axonal guidance is not well known. To uncover the roles of CS in axonal guidance, artificially modified hybrid molecules: CS derivatives of biotinylated CS and lipid-derivatized CS, were used. The experiments with biotinylated CS suggest that the growing axons act on their environment, modifying CS, and rendering it more favorable for their growth. The experiments with lipid-derivatized CS demonstrated that growth cones distinguish types of CS with different unit contents and are likely to discriminate the structural diversity of CS. The application of CS derivatives is useful in uncovering axon–environment interaction and structure–function relationship of CS directly.
    Polymers 02/2013; 5(1):254-268. DOI:10.3390/polym5010254 · 2.51 Impact Factor