Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat.

Department of Entomology and Plant Science and Entomology Research Unit, USDA-ARS, Kansas State University, Manhattan, 66506, USA.
Theoretical and Applied Genetics (Impact Factor: 3.66). 08/2005; 111(2):243-9. DOI: 10.1007/s00122-005-2009-5
Source: PubMed

ABSTRACT H13 is inherited as a major dominant resistance gene in wheat. It was previously mapped to chromosome 6DL and expresses a high level of antibiosis against Hessian fly (Hf) [Mayetiola destructor (Say)] larvae. The objective of this study was to identify tightly linked molecular markers for marker-assisted selection in wheat breeding and as a starting point toward the map-based cloning of H13. Fifty-two chromosome 6D-specific microsatellite (simple sequence repeat) markers were tested for linkage to H13 using near-isogenic lines Molly (PI 562619) and Newton-207, and a segregating population consisting of 192 F(2:3) families derived from the cross PI 372129 (Dn4) x Molly (H13). Marker Xcfd132 co-segregated with H13, and several other markers were tightly linked to H13 in the distal region of wheat chromosome 6DS. Deletion analysis assigned H13 to a small region closely proximal to the breakpoint of del6DS-6 (FL 0.99). Further evaluation and comparison of the H13-linked markers revealed that the same chromosome region may also contain H23 in KS89WGRC03, an unnamed H gene (H(WGRC4)) in KS89WGRC04, the wheat curl mite resistance gene Cmc4, and a defense response gene Ppo for polyphenol oxidase. Thus, these genes comprise a cluster of arthropod resistance genes. Marker analysis also revealed that a very small intercalary chromosomal segment carrying H13 was transferred from the H13 donor parent to the wheat line Molly.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hessian fly (HF), Mayetiola destructor, is an important pest of wheat (Triticum aestivum L.) worldwide. Because it has multiple biotypes that are virulent to different wheat HF resistance genes, pyramiding multiple resistance genes in a cultivar can improve resistance durability, and finding DNA markers tightly linked to these genes is essential to this process. This study identified quantitative trait loci (QTLs) for Hessian fly resistance (HFR) in the wheat cultivar 'Clark' and tightly linked DNA markers for the QTLs. A linkage map was constructed with single nucleotide polymorphism and simple sequence repeat markers using a population of recombinant inbred lines (RILs) derived from the cross 'Ning7840' × 'Clark' by single-seed descent. Two QTLs associated with resistance to fly biotype GP were identified on chromosomes 6B and 1A, with the resistance alleles contributed from 'Clark'. The QTL on 6B flanked by loci Xsnp921 and Xsnp2745 explained about 37.2 % of the phenotypic variation, and the QTL on 1A was flanked by Xgwm33 and Xsnp5150 and accounted for 13.3 % of phenotypic variation for HFR. The QTL on 6B has not been reported before and represents a novel wheat gene with resistance to HF, thus, it is designated H34. A significant positive epistasis was detected between the two QTLs that accounted for about 9.5 % of the mean phenotypic variation and increased HFR by 0.16. Our results indicated that different QTLs may contribute different degrees of resistance in a cultivar and that epistasis may play an important role in HFR.
    Theoretical and Applied Genetics 05/2013; · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Hessian fly (Mayetiola destructor) is one of the most destructive pests of wheat. The genes encoding 12-oxo-phytodienoic acid reductase (OPR) and lipoxygenase (LOX) play critical roles in insect resistance pathways in higher plants, but little is known about genes controlling resistance to Hessian fly in wheat. RESULTS: In this study, 154 F6:8 recombinant inbred lines (RILs) generated from a cross between two cultivars, 'Jagger' and '2174' of hexaploid wheat (2n = 6 x =42; AABBDD), were used to map genes associated with resistance to Hessian fly. Two QTLs were identified. The first one was a major QTL on chromosome 1A (QHf.osu-1A), which explained 70% of the total phenotypic variation. The resistant allele at this locus in cultivar 2174 could be orthologous to one or more of the previously mapped resistance genes (H9, H10, H11, H16, and H17) in tetraploid wheat. The second QTL was a minor QTL on chromosome 2A (QHf.osu-2A), which accounted for 18% of the total phenotypic variation. The resistant allele at this locus in 2174 is collinear to an Yr17-containing-fragment translocated from chromosome 2N of Triticum ventricosum (2n = 4 x =28; DDNN) in Jagger. Genetic mapping results showed that two OPR genes, TaOPR1-A and TaOPR2-A, were tightly associated with QHf.osu-1A and QHf.osu-2A, respectively. Another OPR gene and three LOX genes were mapped but not associated with Hessian fly resistance in the segregating population. CONCLUSIONS: This study has located two major QTLs/genes in bread wheat that can be directly used in wheat breeding programs and has also provided insights for the genetic association and disassociation of Hessian fly resistance with OPR and LOX genes in wheat.
    BMC Genomics 06/2013; 14(1):369. · 4.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insect pests cause substantial damage to wheat production in many wheat-producing areas of the world. Amongst these, Hessian fly (HF), Russian wheat aphid (RWA), Sunn pest (SP), wheat stem saw fly (WSSF) and cereal leaf beetle (CLB) are the most damaging in the areas where they occur. Historically, the use of resistance genes in wheat has been the most effective, environmentally friendly, and cost-efficient approach to controlling pest infestations. In this study, we carried out a genome-wide association study with 2518 Diversity Arrays Technology markers which were polymorphic on 134 wheat genotypes with varying degrees of resistance to the five most destructive pests (HF, RWA, SP, WSSF and CLB) of wheat, using mixed linear model (MLM) analysis with population structure as a covariate. We identified 26 loci across the wheat genome linked to genes conferring resistance to these pests, of which 20 are potentially novel quantitative trait loci with significance values which ranged between 5 × 10−3 and 10−11. We used an in silico approach to identify probable candidate genes at some of the genomic regions and found that their functions varied from defense response with transferase activity to several genes of unknown function. Identification of potentially new loci associated with resistances to pests would contribute to more rapid marker-aided incorporation of new and diverse genes to develop new varieties with improved resistance against these pests.
    Molecular Breeding 12/2013; · 3.25 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014