IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response.

Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2005; 102(26):9241-6. DOI: 10.1073/pnas.0501711102
Source: PubMed

ABSTRACT Peptide generation by the proteasome is rate-limiting in MHC class I-restricted antigen presentation in response to IFN-gamma. IFN-gamma-induced de novo formation of immunoproteasomes, therefore, essentially supports the rapid adjustment of the mammalian immune system. Here, we report that the molecular interplay between the proteasome maturation protein (POMP) and the proteasomal beta5i subunit low molecular weight protein 7 (LMP7) has a key position in this immune adaptive program. IFN-gamma-induced coincident biosynthesis of POMP and LMP7 and their direct interaction essentially accelerate immunoproteasome biogenesis compared with constitutive 20S proteasome assembly. The dynamics of this process is determined by rapid LMP7 activation and the immediate LMP7-dependent degradation of POMP. Silencing of POMP expression impairs recruitment of both beta5 subunits into the proteasome complex, resulting in decreased proteasome activity, reduced MHC class I surface expression, and induction of apoptosis. Furthermore, our data reveal that immunoproteasomes exhibit a considerably shortened half-life, compared with constitutive proteasomes. In consequence, our studies demonstrate that the cytokine-induced rapid immune adaptation of the proteasome system is a tightly regulated and transient response allowing cells to return rapidly to a normal situation once immunoproteasome function is no longer required.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Generally, Trypanosoma cruzi infection in human is persistent and tends to chronicity, suggesting that the parasite evade the immune surveillance by down regulating the intracellular antigen processing routes. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome. However, upon IFN-γ stimulation, the catalytic constitutive subunits of the proteasome are replaced by the subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 to form the immunoproteasome. In this scenario, we analyzed whether the expression and activity of the constitutive and the immunoproteasome as well as the expression of other components of the MHC class I pathway are altered during the infection of HeLa cells with T. cruzi. By RT-PCR and two-dimensional gel electrophoresis analysis, we showed that the expression and composition of the constitutive proteasome is not affected by the parasite. In contrast, the biosynthesis of the β1i, β2i, β5i immunosubunits, PA28β, TAP1 and the MHC class I molecule as well as the proteasomal proteolytic activities were down-regulated in infected-IFN-γ-treated cell cultures. Taken together, our results provide evidence that the protozoan T. cruzi specifically modulates its infection through an unknown posttranscriptional mechanism that inhibits the expression of the MHC class I pathway components.
    PLoS ONE 04/2014; 9(4):e95977. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reviews the role of the catabolism of HCV and signaling proteins in HCV protection and the involvement of ethanol in HCV-proteasome interactions. HCV specifically infects hepatocytes, and intracellularly expressed HCV proteins generate oxidative stress, which is further exacerbated by heavy drinking. The proteasome is the principal proteolytic system in cells, and its activity is sensitive to the level of cellular oxidative stress. Not only host proteins, but some HCV proteins are degraded by the proteasome, which, in turn, controls HCV propagation and is crucial for the elimination of the virus. Ubiquitylation of HCV proteins usually leads to the prevention of HCV propagation, while accumulation of undegraded viral proteins in the nuclear compartment exacerbates infection pathogenesis. Proteasome activity also regulates both innate and adaptive immunity in HCV-infected cells. In addition, the proteasome/immunoproteasome is activated by interferons, which also induce "early" and "late" interferon-sensitive genes (ISGs) with anti-viral properties. Cleaving viral proteins to peptides in professional immune antigen presenting cells and infected ("target") hepatocytes that express the MHC class I-antigenic peptide complex, the proteasome regulates the clearance of infected hepatocytes by the immune system. Alcohol exposure prevents peptide cleavage by generating metabolites that impair proteasome activity, thereby providing escape mechanisms that interfere with efficient viral clearance to promote the persistence of HCV-infection.
    Biomolecules. 12/2014; 4(4):885-896.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein degradation is essential for maintaining cellular homeostasis. The proteasome is the central enzyme responsible for non-lysosomal protein degradation in eukaryotic cells. Although proteasome assembly is not yet completely understood, a number of cofactors required for proper assembly and maturation have been identified. Ump is a short-lived maturation factor required for the efficient biogenesis of the 20S proteasome. Upon the association of the two precursor complexes, Ump is encased and is rapidly degraded after the proteolytic sites in the interior of the nascent proteasome are activated. In order to further understand the mechanisms behind proteasomal maturation, we expressed and purified yeast Ump in E. coli for biophysical and structural analysis. We show that recombinant Ump is purified as a mixture of different oligomeric species and that oligomerization is mediated by intermolecular disulfide bond formation involving the only cysteine residue present in the protein. Furthermore, a combination of bioinformatic, biochemical and structural analysis revealed that Ump shows characteristics of an intrinsically disordered protein, which might become structured only upon interaction with the proteasome subunits.
    Computational and structural biotechnology journal. 04/2013; 7:e201304006.

Full-text (2 Sources)

Available from
May 20, 2014