IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response.

Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2005; 102(26):9241-6. DOI: 10.1073/pnas.0501711102
Source: PubMed

ABSTRACT Peptide generation by the proteasome is rate-limiting in MHC class I-restricted antigen presentation in response to IFN-gamma. IFN-gamma-induced de novo formation of immunoproteasomes, therefore, essentially supports the rapid adjustment of the mammalian immune system. Here, we report that the molecular interplay between the proteasome maturation protein (POMP) and the proteasomal beta5i subunit low molecular weight protein 7 (LMP7) has a key position in this immune adaptive program. IFN-gamma-induced coincident biosynthesis of POMP and LMP7 and their direct interaction essentially accelerate immunoproteasome biogenesis compared with constitutive 20S proteasome assembly. The dynamics of this process is determined by rapid LMP7 activation and the immediate LMP7-dependent degradation of POMP. Silencing of POMP expression impairs recruitment of both beta5 subunits into the proteasome complex, resulting in decreased proteasome activity, reduced MHC class I surface expression, and induction of apoptosis. Furthermore, our data reveal that immunoproteasomes exhibit a considerably shortened half-life, compared with constitutive proteasomes. In consequence, our studies demonstrate that the cytokine-induced rapid immune adaptation of the proteasome system is a tightly regulated and transient response allowing cells to return rapidly to a normal situation once immunoproteasome function is no longer required.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Generally, Trypanosoma cruzi infection in human is persistent and tends to chronicity, suggesting that the parasite evade the immune surveillance by down regulating the intracellular antigen processing routes. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome. However, upon IFN-γ stimulation, the catalytic constitutive subunits of the proteasome are replaced by the subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 to form the immunoproteasome. In this scenario, we analyzed whether the expression and activity of the constitutive and the immunoproteasome as well as the expression of other components of the MHC class I pathway are altered during the infection of HeLa cells with T. cruzi. By RT-PCR and two-dimensional gel electrophoresis analysis, we showed that the expression and composition of the constitutive proteasome is not affected by the parasite. In contrast, the biosynthesis of the β1i, β2i, β5i immunosubunits, PA28β, TAP1 and the MHC class I molecule as well as the proteasomal proteolytic activities were down-regulated in infected-IFN-γ-treated cell cultures. Taken together, our results provide evidence that the protozoan T. cruzi specifically modulates its infection through an unknown posttranscriptional mechanism that inhibits the expression of the MHC class I pathway components.
    PLoS ONE 01/2014; 9(4):e95977. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Atherosclerosis is a vascular disease of worldwide significance with fatal complications such as myocardial infarction, stroke and peripheral artery disease. Atherosclerosis is recognized as a chronic inflammatory disease leading to arterial plaque formation and vessel narrowing in different vascular beds. Besides the strong inflammatory nature of atherosclerosis, it is also characterized by proliferation, apoptosis and enhanced oxidative stress. The ubiquitin-proteasome system (UPS) is the major intracellular degradation system in eukaryotic cells. Besides its essential role in the degradation of dysfunctional and oxidatively damaged proteins, it is involved in many processes which influence disease progression in atherosclerosis. Hence, it is logical to ask whether targeting the proteasome is a reasonable and feasible option for the treatment of atherosclerosis. Recent advances: Several lines of evidence suggest stage-specific dysfunction of the UPS in atherogenesis. Regulation of key processes by the proteasome in atherosclerosis, as well as the modulation of these processes by proteasome inhibitors in vascular cells, is outlined in this review. Treatment of atherosclerotic animal models with proteasome inhibitors yielded partly opposing results; the potentially underlying reasons of which are discussed here. Critical issues and Future directions: Targeting UPS function in atherosclerosis is a promising but challenging option. Limitations of current proteasome inhibitors, dose-dependency and the cell-specificity of effects, as well as the potential of future therapeutics are discussed. Stage-specific in depth exploration of UPS function in atherosclerosis in the future will help identify targets and windows for beneficial intervention.
    Antioxidants & Redox Signaling 02/2014; · 8.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein degradation is essential for maintaining cellular homeostasis. The proteasome is the central enzyme responsible for non-lysosomal protein degradation in eukaryotic cells. Although proteasome assembly is not yet completely understood, a number of cofactors required for proper assembly and maturation have been identified. Ump is a short-lived maturation factor required for the efficient biogenesis of the 20S proteasome. Upon the association of the two precursor complexes, Ump is encased and is rapidly degraded after the proteolytic sites in the interior of the nascent proteasome are activated. In order to further understand the mechanisms behind proteasomal maturation, we expressed and purified yeast Ump in E. coli for biophysical and structural analysis. We show that recombinant Ump is purified as a mixture of different oligomeric species and that oligomerization is mediated by intermolecular disulfide bond formation involving the only cysteine residue present in the protein. Furthermore, a combination of bioinformatic, biochemical and structural analysis revealed that Ump shows characteristics of an intrinsically disordered protein, which might become structured only upon interaction with the proteasome subunits.
    Computational and structural biotechnology journal. 01/2013; 7:e201304006.

Full-text (2 Sources)

Available from
May 20, 2014