Article

Inhibition of membrane type-1 matrix metalloproteinase by cancer drugs interferes with the homing of diabetogenic T cells into the pancreas.

The Burnham Institute, La Jolla, California 92037, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 08/2005; 280(30):27755-8. DOI: 10.1074/jbc.M506016200
Source: PubMed

ABSTRACT We have discovered that clinically tested inhibitors of matrix metalloproteinases can control the functional activity of T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the onset of disease in a rodent model of type 1 diabetes in non-obese diabetic mice. We determined that MT1-MMP proteolysis of the T cell surface CD44 adhesion receptor affects the homing of T cells into the pancreas. We also determined that both the induction of the intrinsic T cell MT1-MMP activity and the shedding of cellular CD44 follow the adhesion of insulin-specific, CD8-positive, Kd-restricted T cells to the matrix. Conversely, inhibition of these events by AG3340 (a potent hydroxamate inhibitor that was widely used in clinical trials in cancer patents) impedes the transmigration of diabetogenic T cells into the pancreas and protects non-obese diabetic mice from diabetes onset. Overall, our studies have divulged a previously unknown function of MT1-MMP and identified a promising novel drug target in type I diabetes.

0 Bookmarks
 · 
39 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide the first comprehensive analysis of the extracellular matrix (ECM) composition of peri-islet capsules, composed of the peri-islet basement membrane (BM) and subjacent interstitial matrix (IM), in development of type 1 diabetes in NOD mice and in human type 1 diabetes. Our data demonstrate global loss of peri-islet BM and IM components only at sites of leukocyte infiltration into the islet. Stereological analyses reveal a correlation between incidence of insulitis and the number of islets showing loss of peri-islet BM versus islets with intact BMs, suggesting that leukocyte penetration of the peri-islet BM is a critical step. Protease- and protease inhibitor-specific microarray analyses (CLIP-CHIP) of laser-dissected leukocyte infiltrated and noninfiltrated pancreatic islets and confirmatory quantitative real time PCR and protein analyses identified cathepsin S, W, and C activity at sites of leukocyte penetration of the peri-islet BM in association with a macrophage subpopulation in NOD mice and human type 1 diabetic samples and, hence, potentially a novel therapeutic target specifically acting at the islet penetration stage. Interestingly, the peri-islet BM and underlying IM are reconstituted once inflammation subsides, indicating that the peri-islet BM-producing cells are not lost due to the inflammation, which has important ramifications to islet transplantation studies.
    Diabetes 11/2012; · 7.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD44 is expressed on the cell surface of lymphocytes and other hematopoietic and non-hematopoietic cells, where regulates cell-cell and environment-cell interactions by binding different components of extracellular matrix. CD44 is implicated in several other cellular processes, such as regulation of growth, survival, differentiation and motility, both under physiological and pathologic conditions. Studies on CD44-null or transgenic mice also established its involvement in diseases such as cancer, atherosclerosis and myocardial infarction. Its regulation involves several control mechanisms among which a fundamental role is played by alternative splicing of its pre-mRNA and by post-translational modifications. Here we review the mechanisms of regulation upstream and downstream of CD44.
    International Trends in Immunology. 09/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study tested the hypothesis that membrane-tethered type-1 matrix metalloproteinase (MT1-MMP)-induced proteolysis of T cell CD44 is important for defining the migration and function of autoreactive T cells, including diabetogenic, insulin-specific and K(d)-restricted IS-CD8(+) cells. To confirm the importance of MT1-MMP proteolysis of CD44 in type 1 diabetes (T1D), the anti-diabetic effects of three MMP inhibitors (3(S)-2,2-dimethyl-4[4-pyridin-4-yloxy-benzenesulfonyl]-thiomorpholine-3-carboxylic acid hydroxamate [AG3340], 2-(4-phenoxyphenylsulfonylmethyl) thiirane [SB-3CT] and epigallocatechin-3-gallate [EGCG]) were compared using an adoptive diabetes transfer model in non-obese diabetic (NOD) mice. Only AG3340 was capable of inhibiting both the activity of MT1-MMP and the shedding of CD44 in T cells; and the transendothelial migration and homing of IS-CD8(+) T cells into the pancreatic islets. SB-3CT and EGCG were incapable of inhibiting T cell MT1-MMP efficiently. As a result, AG3340 alone, but not SB-3CT or EGCG, delayed the onset of transferred diabetes in NOD mice. In summary, the results of the present study emphasize that the MT1-MMP-CD44 axis has a unique involvement in T1D development. Accordingly, we suggest that a potent small-molecule MT1-MMP antagonist is required for the design of novel therapies for T1D.
    Experimental and therapeutic medicine 02/2013; 5(2):438-442. · 0.34 Impact Factor