Article

Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism.

The Salk Institute, La Jolla, California 92037, USA.
Neuron (Impact Factor: 15.77). 06/2005; 46(4):569-79. DOI: 10.1016/j.neuron.2005.04.002
Source: PubMed

ABSTRACT Synapse formation requires interactions between pre- and postsynaptic cells to establish the connection of a presynaptic nerve terminal with the neurotransmitter receptor-rich postsynaptic apparatus. At developing vertebrate neuromuscular junctions, acetylcholine receptor (AChR) clusters of nascent postsynaptic apparatus are not apposed by presynaptic nerve terminals. Two opposing activities subsequently promote the formation of synapses: positive signals stabilize the innervated AChR clusters, whereas negative signals disperse those that are not innervated. Although the nerve-derived protein agrin has been suggested to be a positive signal, the negative signals remain elusive. Here, we show that cyclin-dependent kinase 5 (Cdk5) is activated by ACh agonists and is required for the ACh agonist-induced dispersion of the AChR clusters that have not been stabilized by agrin. Genetic elimination of Cdk5 or blocking ACh production prevents the dispersion of AChR clusters in agrin mutants. Therefore, we propose that ACh negatively regulates neuromuscular synapse formation through a Cdk5-dependent mechanism.

0 Bookmarks
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cumulative evidence indicates that Wnt pathways play crucial and diverse roles to assemble the neuromuscular junction (NMJ), a peripheral synapse characterized by the clustering of acetylcholine receptors (AChR) on postsynaptic densities. The molecular determinants of Wnt effects at the NMJ are still to be fully elucidated. We report here that the Wnt receptor Frizzled-9 (Fzd9) is expressed in developing skeletal muscles during NMJ synaptogenesis. In cultured myotubes, gain-and loss-of-function experiments revealed that Fzd9-mediated signaling impairs the AChR-clustering activity of agrin, an organizer of postsynaptic differentiation. Overexpression of Fzd9 induced the cytosolic accumulation of β-catenin, a key regulator of Wnt signaling. Consistently, Fzd9 and β-catenin localize in the postsynaptic domain of embryonic NMJs in vivo. Our findings represent the first evidence pointing to a crucial role of a Fzd-mediated, β-catenin-dependent signaling on the assembly of the vertebrate NMJ.
    Frontiers in Cellular Neuroscience 04/2014; · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Motor neurons regulate neuromuscular junction formation by using agrin to stimulate acetylcholine receptor clustering and using acetylcholine to disperse unnecessary receptor clusters on muscle fibers. Wang et al. (2014) now report in this issue of Developmental Cell a critical role for caspase-3 in intracellular mechanisms of acetylcholine-induced dispersal.
    Developmental Cell 03/2014; 28(6):604-6. · 12.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1-R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer specificity. We show that Jelly belly (Jeb) produced by R1-R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system.
    Neuron 04/2014; 82(2):320-33. · 15.77 Impact Factor