Article

Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni.

Department of Psychology, University of Virginia, Charlottesville, VA 22904, United States.
Brain Behavior and Immunity (Impact Factor: 6.13). 08/2005; 19(4):334-44. DOI: 10.1016/j.bbi.2004.09.002
Source: PubMed

ABSTRACT Abundant evidence now supports the idea that multiple pathways or mechanisms underlie communication from the immune system to the brain. The presence of a variety of mechanisms suggests that they may each contribute something different to immunosensory signaling. For instance, brain mediated immune signal transduction is dependent upon the presence of circulating mediators whereas peripheral sensory nerves are more likely to be important early on in an infection, prior to elevation of circulating cytokines, or in local infections within the terminal fields of these nerves. To test the hypothesis that local infection in the gut activates vagal sensory neurons, we assessed expression of the neuronal activation marker c-Fos in neurons in the vagal sensory ganglia and in the primary sensory relay nucleus for the vagus, the nucleus of the solitary tract (nTS) in mice treated orally either with saline or live Campylobacter jejuni (C. jejuni). Male CF1 mice were inoculated orally with either C. jejuni or saline, and c-Fos expression in the vagal sensory neurons and brain 4-12 h later was assessed via immunohistochemistry. Oral inoculation with C. jejuni led to a significant increase in c-Fos expression in neurons bilaterally in the vagal ganglia, in the absence of elevated levels of circulating pro-inflammatory cytokines. C. jejuni treatment activated neurons in the nTS, as well as in brain regions associated with primary viscerosensory pathways and the central autonomic network. These findings provide evidence that peripheral sensory neurons contribute an early signal to the brain regarding potential pathogens.

0 Bookmarks
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity. In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a 'healthy' relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a 'healthy' colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium. Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in rodent models, these data suggest that CNS-related co-morbidities frequently associated with GI disease may originate in the intestine as a result of microbial dysbiosis. This review outlines the current evidence showing the extent to which the gut microbiota contributes to the development of disease. Based on evidence to date, we can assess the potential to positively modulate the composition of the colonic microbiota and ameliorate disease activity through bacterial intervention. T he human intestinal microbiota is made up of trillions of microorganisms most of which are of bacterial and viral origin that are considered to be non-pathogenic (1, 2). The microbiota functions in tandem with the host's defences and the immune system to protect against pathogen colonisation and invasion. It also performs an essential metabolic function, acting as a source of essential nutrients and vitamins and aiding in the extraction of energy and nutrients, such as short-chain fatty acids (SCFA) and amino acids, from food. Ulti-mately, the host depends on its intestinal microbiota for a number of vital functions and thus the intestinal micro-biota may contribute to health. It is, however, difficult to describe the precise impact of the intestinal microbiota on human health and the involvement in human disease. Alterations in the microbiota can result from exposure to various environmental factors, including diet, toxins, drugs, and pathogens. Of these, enteric pathogens have the greatest potential to cause microbial dysbiosis as seen in experimental animal models, where foodborne viral
    Microbial Ecology in Health and Disease 01/2015; 26.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depression is characterized by disturbed sleep and eating, a variety of other nonspecific somatic symptoms, and significant somatic comorbidities. Why there is such close association between cognitive and somatic dysfunction in depression is nonetheless poorly understood. An explosion of research in the area of interoception—the perception and interpretation of bodily signals— over the last decade nonetheless holds promise for illuminating what have until now been obscure links between the social, cognitive–affective, and somatic features of depression. This article reviews rapidly accumulating evidence that both somatic signaling and interoception are frequently altered in depression. This includes comparative studies showing vagus-mediated effects on depression-like behaviors in rodent models as well as studies in humans indicating both dysfunction in the neural substrates for interoception (e.g., vagus, insula, anterior cingulate cortex) and reduced sensitivity to bodily stimuli in depression. An integrative framework for organizing and interpreting this evidence is put forward which incorporates (a) multiple potential pathways to interoceptive dysfunction; (b) interaction with individual, gender, and cultural differences in interoception; and (c) a developmental psychobiological systems perspective, emphasizing likely differential susceptibility to somatic and interoceptive dysfunction across the lifespan. Combined with current theory and evidence, it is suggested that core symptoms of depression (e.g., anhedonia, social deficits) may be products of disturbed interoceptive– exteroceptive integration. More research is nonetheless needed to fully elucidate the relationship between mind, body, and social context in depression.
    Psychological Bulletin 01/2015; · 14.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers. © 2014 American Physiological Society. Compr Physiol 4: 1339-1368, 2014.
    Comprehensive Physiology. 10/2014; 4(4):1339-68.

Full-text

Download
41 Downloads
Available from
May 27, 2014