Role of oxidative damage in the pathogenesis of viral infections of the nervous system

Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
Histology and histopathology (Impact Factor: 2.1). 08/2005; 20(3):957-67.
Source: PubMed


Oxidative stress, primarily due to increased generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), is a feature of many viral infections. ROS and RNS modulate the permissiveness of cells to viral replication, regulate host inflammatory and immune responses, and cause oxidative damage to both host tissue and progeny virus. The lipid-rich nervous system is particularly susceptible to lipid peroxidation, an autocatalytic process that damages lipid-containing structures and yields reactive by-products, which can covalently modify and damage cellular macromolecules. Oxidative injury is a component of acute encephalitis caused by herpes simplex virus type 1 and reovirus, neurodegenerative disease caused by human immunodeficiency virus and murine leukemia virus, and subacute sclerosing panencephalitis caused by measles virus. The extent to which oxidative damage plays a beneficial role for the host by limiting viral replication is largely unknown. An enhanced understanding of the role of oxidative damage in viral infections of the nervous system may lead to therapeutic strategies to reduce tissue damage during viral infection without impeding the host antiviral response.

9 Reads
  • Source
    • "Recent studies revealed that oxidative damage is an emerging general mechanism of nervous system injury caused by viral infection. For example, oxidative injury is a component of acute encephalitis caused by herpes simplex virus type 1 (HSV-1) [16]. HSV-1 infection of nervous system tissues in mice was associated with the expression of inducible nitric oxide synthase (iNOS) and the release of cytokines including TNF-α from inflammatory cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the involvement of oxidative stress in the pathogenesis of acute encephalopathy associated with human herpesvirus-6 (HHV-6) infection, we measured the levels of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hexanoyl-lysine adduct (HEL), tau protein, and cytokines in cerebrospinal fluid (CSF) obtained from patients with HHV-6-associated acute encephalopathy (HHV-6 encephalopathy) (n = 16) and complex febrile seizures associated with HHV-6 (HHV-6 complex FS) (n = 10). We also examined changes in CSF-8OHdG and CSF-HEL levels in patients with HHV-6 encephalopathy before and after treatment with edaravone, a free radical scavenger. CSF-8-OHdG levels in HHV-6 encephalopathy and HHV-6 complex FS were significantly higher than in control subjects. In contrast, CSF-HEL levels showed no significant difference between groups. The levels of total tau protein in HHV-6 encephalopathy were significantly higher than in control subjects. In six patients with HHV-6 infection (5 encephalopathy and 1 febrile seizure), the CSF-8-OHdG levels of five patients decreased after edaravone treatment. Our results suggest that oxidative DNA damage is involved in acute encephalopathy associated with HHV-6 infection.
    Mediators of Inflammation 09/2014; 2014:564091. DOI:10.1155/2014/564091 · 3.24 Impact Factor
  • Source
    • "Viral infections are commonly associated with the appearance of oxidative stress in infected cells. Certainly, HSV-1 shifts the intracellular redox balance towards a pro-oxidant state (reviewed in [23], [24]). Oxidative damage could therefore be an infection-induced mechanism of neuronal injury. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mounting evidence suggests that Herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of Alzheimer's disease (AD). Previous work from our laboratory has shown HSV-1 infection to induce the most important pathological hallmarks of AD brains. Oxidative damage is one of the earliest events of AD and is thought to play a crucial role in the onset and development of the disease. Indeed, many studies show the biomarkers of oxidative stress to be elevated in AD brains. In the present work the combined effects of HSV-1 infection and oxidative stress on Aβ levels and autophagy (neurodegeneration markers characteristic of AD) were investigated. Oxidative stress significantly potentiated the accumulation of intracellular Aβ mediated by HSV-1 infection, and further inhibited its secretion to the extracellular medium. It also triggered the accumulation of autophagic compartments without increasing the degradation of long-lived proteins, and enhanced the inhibition of the autophagic flux induced by HSV-1. These effects of oxidative stress were not due to enhanced virus replication. Together, these results suggest that HSV-1 infection and oxidative damage interact to promote the neurodegeneration events seen in AD.
    PLoS ONE 10/2013; 8(10):e75842. DOI:10.1371/journal.pone.0075842 · 3.23 Impact Factor
  • Source
    • "The expression and activity of both these enzymes are known to be increased by oxidative stress conditions, like those detected by the presence of high levels of ROS and lipid peroxidation products [46]–[48]. Interestingly, results from in vitro and in vivo studies indicate that HSV-1 infection shifts the redox balance in host cells toward a pro-oxidant state [49]–[50]. Furthermore, in murine neuronal cells HSV-1 infection has been shown to increase the formation of ROS and products of lipid peroxidation [51], and high levels of lipid-peroxidation and protein-nitrosylation products have been detected in brain areas affected by acute or latent HSV-1 after infection at primary sites [52]–[53]. Together with our demonstration that antioxidant compounds prevent the virus-induced formation of APP-F35, these findings strongly suggest that HSV-1-induced oxidative stress in neuronal cells may activate β- and γ-secretases, thereby triggering APP processing and APP-F35. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimer's disease (AD). This multifactorial neurodegenerative disorder is related to an overproduction of amyloid beta (Aβ) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45) that comprise portions of Aβ; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Aβ(1-40) and Aβ(1-42). Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Aβ oligomer. The multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP processing pathway, i.e., host-cell β-secretase, γ-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation could, in the presence of other risk factors, play a co-factorial role in the development of AD.
    PLoS ONE 11/2010; 5(11):e13989. DOI:10.1371/journal.pone.0013989 · 3.23 Impact Factor
Show more


9 Reads
Available from