Age-dependent changes of glyoxalase I expression in human brain

Institut für Pathologie, University of Leipzig, Leipzig, Saxony, Germany
Neurobiology of Aging (Impact Factor: 4.85). 07/2006; 27(6):815-22. DOI: 10.1016/j.neurobiolaging.2005.04.006
Source: PubMed

ABSTRACT Increased modification and crosslinking of proteins by advanced glycation end products (AGEs) is a characteristic feature of aging, and contributes to the formation of many of the lesions of neurodegenerative diseases including neurofibrillary tangles and amyloid plaques in Alzheimer's disease. Therefore, defense mechanisms against AGE formation or detoxification of their precursors such as the glyoxalase system are of particular interest in aging research. Thus, we investigated the age-dependent protein expression, the activity as well as the RNA level of glyoxalase I in Brodmann area 22 (auditory association area of superior temporal gyrus) of the human cerebral cortex. Our immunohistochemical results demonstrate the localization of glyoxalase I in neurons, predominantly pyramidal cells, as well as in astroglia, located predominantly in the subpial region. The number of glyoxalase I expressing neurons and astroglia increases with age, with a peak at approximately 55 years, and progressively decreases thereafter. These results were confirmed by biochemical investigations in total brain tissue, where the RNA, the protein level as well as the activity of glyoxalase I enzyme were analyzed in different age groups. In conclusion, the increase in glyoxalase I expression up to the age of 55 may be a compensatory mechanism against high oxoaldyde levels and the accumulation of AGEs. However, the decline of glyoxalase expression and activity in old age, possibly caused by impairment in transcription or/and translation, may subsequently lead to increased levels of reactive carbonyl compounds, followed by protein crosslinking, inflammation, oxidative stress and neuronal degeneration.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glyoxalase I (GLO1) is a homodimeric Zn(2+)-dependent isomerase involved in the detoxification of methylglyoxal and in limiting the formation of advanced glycation end-products (AGE). We previously found the rs4746 A332 (Glu111) allele of the GLO1 gene, which encodes for glyoxalase I, associated with "unaffected sibling" status in families with one or more children affected by Autism Spectrum Disorder (ASD). To identify and characterize this protective allele, we sequenced GLO1 exons and exon-intron junctions, detecting two additional SNPs (rs1049346, rs1130534) in linkage disequilibrium with rs4746. A family-based association study involving 385 simplex and 20 multiplex Italian families yielded a significant association with autism driven only by the rs4746 C332 (Ala111) allele itself (P < 0.05 and P < 0.001 under additive and dominant/recessive models, respectively). Glyoxalase enzymatic activity was significantly reduced both in leukocytes and in post-mortem temporocortical tissue (N = 38 and 13, respectively) of typically developing C332 allele carriers (P < 0.05 and <0.01), with no difference in Glo1 protein levels. Conversely, AGE amounts were significantly higher in the same C332 post-mortem brains (P = 0.001), with a strong negative correlation between glyoxalase activity and AGE levels (τ = -0.588, P < 0.01). Instead, 19 autistic brains show a dysregulation of the glyoxalase-AGE axis (τ = -0.209, P = 0.260), with significant blunting of glyoxalase activity and AGE amounts compared to controls (P < 0.05), and loss of rs4746 genotype effects. In summary, the GLO1 C332 (Ala111) allele confers autism vulnerability by reducing brain glyoxalase activity and enhancing AGE formation, but years after an autism diagnosis the glyoxalase-AGE axis appears profoundly disrupted, with loss of C332 allelic effects.
    Journal of Psychiatric Research 08/2014; 59. DOI:10.1016/j.jpsychires.2014.07.021 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose is the main energy substrate for the brain. There is now extensive evidence indicating that the metabolic profile of neural cells with regard to glucose utilization and glycolysis rate is not homogenous, with a marked propensity for glycolytic glucose processing in astrocytes compared to neurons. Methylglyoxal, a highly reactive dicarbonyl compound, is inevitably formed as a by-product of glycolysis. Methylglyoxal is a major cell-permeant precursor of advanced glycation end-products (AGEs), which are associated with several pathologies including diabetes, aging and neurodegenerative diseases. In normal situations, cells are protected against methylglyoxal toxicity by different mechanisms and in particular the glyoxalase system, which represents the most important pathway for the detoxification of methylglyoxal. While the neurotoxic effects of methylglyoxal and AGEs are well characterized, our understanding the glyoxalase system in the brain is more scattered. Considering the high energy requirements (i.e., glucose) of the brain, one should expect that the cerebral glyoxalase system is adequately fitted to handle methylglyoxal toxicity. This review focuses on our actual knowledge on the cellular aspects of the glyoxalase system in brain cells, in particular with regard to its activity in astrocytes and neurons. A main emerging concept is that these two neural cell types have different and energetically adapted glyoxalase defense mechanisms which may serve as protective mechanism against methylglyoxal-induced cellular damage.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated proteins differentially expressed in the ovaries of menopausal women in comparison to childbearing women. Differential protein expression was screened by difference gel electrophoresis and 2-D SDS-PAGE. Four differentially expressed proteins were excised manually, identified by mass spectrometry and confirmed by immunoblot and immunohistochemistry. The four proteins were identified as serum amyloid P, heat shock protein 27, Glyoxalase I and Ubiquitin carboxy-terminal hydrolase. Serum amyloid P expression was significantly up-regulated in the ovaries of menopausal women by immunoblot analysis (p < 0.05), Glyoxalase I and Ubiquitin carboxy-terminal hydrolase displayed an altered expression pattern, with higher expression in the atretic follicles of menopausal women. Weak Glyoxalase I and Ubiquitin carboxy-terminal hydrolase were observed in the granulosa and theca cells of the follicles of childbearing women. Heat shock protein 27 and serum amyloid P were clearly observed in the atretic follicles of menopausal women, while their expression was restricted to the theca cells and cytoplasm of primordial follicles in the ovaries of childbearing women. All four proteins were predominantly expressed in the atretic follicles of menopausal women. These data suggest that the identified proteins may play a role in the regulation of follicle atresia in menopausal women, although their functions and mechanism warrant further investigation.
    Archives of Gynecology and Obstetrics 07/2014; 290(6). DOI:10.1007/s00404-014-3357-7 · 1.28 Impact Factor