Article

Polybrominated diphenyl ethers (PBDEs) in sediments and mussel tissues from Hong Kong marine waters.

Department of Biology and Chemistry, Centre for Coastal Pollution and Conservation, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.
Marine Pollution Bulletin (Impact Factor: 2.79). 12/2005; 50(11):1173-84. DOI: 10.1016/j.marpolbul.2005.04.025
Source: PubMed

ABSTRACT Sediments and green-lipped mussels, Perna viridis, were used to investigate concentrations of polybrominated diphenyl ethers (PBDEs) in Hong Kong's marine environment. PBDEs have been used extensively over the past two decades as flame retardants in polymer additives for a variety of plastics, computers, furniture, building materials, and fabrics. Many measurements of PBDEs in various environmental matrices have been reported from Belgium, Holland, Japan, Europe and North America, but few measurements are available for the southeast Asian region and Hong Kong. PBDE congeners (n=15) were measured in 13 sediments and nine mussel samples, taken from Hong Kong marine waters. The Sigma15PBDEs in sediments ranged between 1.7 and 53.6 ng g(-1) dry wt, with the highest concentrations located around the most heavily populated areas of Victoria Harbour and Sai Kung, while the lowest concentrations of Sigma15PBDEs were found at more remote locations of Sha Tau Kok, Wong Chuk Bay, Castle Peak Bay, and Gold Coast. Sigma15PBDEs ranged from 27.0 to 83.7 ng g(-1) dry wt of mussel tissues. Although not identical, most of the congeners in sediments were found in mussel tissues, with BDE-47, BDE-99, BDE-153 and BDE-183 being the most prominent in both matrices. On the basis of a literature survey, the concentrations of PBDEs reported in Hong Kong sediments and mussel tissues are amongst the highest in the world.

0 Followers
 · 
200 Views
  • Persistent Organic Pollutants (POPs): Analytical Techniques, Environmental Fate and Biological Effects, Edited by Eddy Y. Zeng, 03/2015: chapter 14: pages 433-491; Elsevier., ISBN: 978-0-444-63299-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: The contamination status and potential sources of hexabromocyclododecanes (HBCDs) in the coastal environment were investigated using sediment samples from a semi-enclosed bay in South Korea. HBCDs displayed a very different distribution profile compared to polybrominated diphenyl ethers (PBDEs) and nonylphenol, indicating different emission sources inside the bay. A strong enrichment of HBCDs was found near aquaculture areas that used expanded polystyrene (EPS) buoys, which were confirmed to be the main source of HBCDs following an analysis of buoys collected from a market and the coast. EPS buoys contained large amounts of HBCDs, with lower levels in the outside layer than inside, implying the leaching of HBCDs from the surface throughout their lifetime. This was reflected in the high levels of HBCDs measured in coastal sediments near aquaculture farms. A wastewater treatment plant was found to be an additional source of HBCDs. A dated core sample revealed an increase in HBCD concentrations over time. The isomeric profiles for most of the surface and core sediment samples were dominated by the γ-diastereoisomer.
    Science of The Total Environment 02/2015; 505:290–298. DOI:10.1016/j.scitotenv.2014.10.019 · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants which cause adverse effects to human health and environments. Wastewater treatment plants (WWTPs) receive PBDEs from various discharges but also release them back to the environment via treated effluent and sludge, depending on the removal efficiency of WWTPs. This study investigated the contamination of PBDEs in primary influent, final effluent and dewatered sludge in four WWTPs in Hong Kong from October 2011 to January 2013. Results showed that the concentrations and composition profiles of eight PBDE congeners (BDE-28, -47, -99, -100, -153, -154,-183 and -209) differed among WWTPs and fluctuated during the study period. Higher concentrations of PBDEs were detected in the influent and dewatered sludge from the two WWTPs receiving both domestic and industrial wastewaters than the two serve mainly residential and commercial districts. However, the PBDE concentrations in the effluent were comparable among WWTPs. The concentrations of Σ8PBDEs (total of eight congeners) in the influent of all WWTPs ranged from 1 to 254ngL(-1) but decreased to 12-27ngL(-1) in effluent, with removal efficiency ranged from 20 to 53%. High concentrations of PBDEs, ranging from 9 to 307ngg(-1) dry weights, were detected in dewatered sludge. The predominated congeners in influent were BDE-47 and -209 but shifted to BDE-47 and -99 in effluent and BDE-209 in dewatered sludge. Every day, it is estimated 0.66-73g PBDEs entered the four WWTPs, while 0.38-38g and 0.17-17g PBDEs were discharged to the surrounding waters via effluent and disposed to landfill sites in sludge form, respectively. These results indicated that the four WWTPs in Hong Kong were not designed for effectively removal of PBDEs, 52-80% of the incoming PBDEs were still remained in effluent and 21-45% was precipitated in sludge, both outputs became significant contamination sources.
    Science of The Total Environment 09/2014; 502C:133-142. DOI:10.1016/j.scitotenv.2014.08.090 · 3.16 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
Jun 11, 2014