Article

Regulation of urokinase receptor expression by phosphoglycerate kinase is independent of its catalytic activity

University of Texas Health Science Center at Tyler, Tyler, Texas, United States
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.04). 11/2005; 289(4):L591-8. DOI: 10.1152/ajplung.00319.2004
Source: PubMed

ABSTRACT Posttranscriptional regulation of urokinase-type plasminogen activator receptor (uPAR) mRNA involves the interaction of a uPAR mRNA coding region sequence with phosphoglycerate kinase (PGK), a 50-kDa uPAR mRNA binding protein. PGK catalyzes a reversible transfer of a phosphoryl group from 1,3-biphosphoglycerate to ADP in the glycolytic pathway. Our previous studies showed that overexpression of PGK in uPAR-overproducing H157 lung carcinoma cells results in decreased cytoplasmic uPAR mRNA and cell surface uPAR protein expression through destabilization of the mRNA. In order to determine the role of PGK enzymatic activity on uPAR mRNA stability we mutated PGK by changing amino acid P204H and amino acid D219A. The mutant proteins were expressed in Epicurian coli BL21 cells, and the purified proteins were analyzed for PGK activity. We found that mutation of amino acid P204H and D219A reduced PGK activity by 99 and 83%, respectively. By gel mobility shift and Northwestern assay, we found that the mutant proteins were able to bind to uPAR mRNA as effectively as wild-type PGK. Overexpression of mutant, inactive PGK in H157 cells reduced cell surface uPAR protein as well as uPAR mRNA expression. Run-on transcription analysis indicated that overexpression of mutant PGKs fails to alter the rate of synthesis of uPAR mRNA, whereas transcription chase experiments demonstrated that both mutants and wild-type PGK reduce the stability of the uPAR mRNA transcripts to a similar extent. Overexpression of mutant PGK also inhibited the rate of DNA synthesis and the invasion-migration ratio. These results demonstrate that uPAR mRNA binding activity as well as PGK-mediated regulation of uPAR mRNA are independent of PGK enzymatic activity.

0 Followers
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Cancer cells acquire an unusual glycolytic behavior to a large extent relative to an intracellular alkaline (pH i). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment, and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then propose a new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
    12/2014; 1.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment, and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then propose a new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Urokinase-type plasminogen activator (uPA) is expressed by lung epithelial cells and regulates fibrin turnover and epithelial cell viability. PMA, LPS, and TNF-alpha, as well as uPA itself, induce uPA expression in lung epithelial cells. PMA, LPS, and TNF-alpha induce uPA expression through increased synthesis as well as stabilization of uPA mRNA, while uPA increases its own expression solely through uPA mRNA stabilization. The mechanism by which lung epithelial cells regulate uPA expression at the level of mRNA stability is unclear. To elucidate this process, we sought to characterize protein-uPA mRNA interactions that regulate uPA expression. Regulation of uPA at the level of mRNA stability involves the interaction of a ~40 kDa cytoplasmic-nuclear shuttling protein with a 66 nt uPA mRNA 3'UTR sequence. We purified the uPA mRNA 3'UTR binding protein and identified it as ribonucleotide reductase M2 (RRM2). We expressed recombinant RRM2 and confirmed its interaction with a specific 66 nt uPA 3'UTR sequence. Immunoprecipitation of cell lysates with anti-RRM2 antibody and RT-PCR for uPA mRNA confirmed that RRM2 binds to uPA mRNA. Treatment of Beas2B cells with uPA or LPS attenuated RRM2-endogenous uPA mRNA interactions, while overexpression of RRM2 inhibited uPA protein and mRNA expression through destabilization of uPA mRNA. LPS exposure of lung epithelial cells translocates RRM2 from the cytoplasm to the nucleus in a time-dependent manner, leading to stabilization of uPA mRNA. This newly recognized pathway could influence uPA expression and a broad range of uPA-dependent functions in lung epithelial cells in the context of lung inflammation and repair.
    Biochemistry 12/2011; 51(1):205-13. DOI:10.1021/bi201293x · 3.19 Impact Factor

Similar Publications