Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol.62(8):1250-1255

Department of Neurology, University of Florida, Movement Disorders Center, McKnight Brain Institute, Gainesville, FL 32610, USA.
JAMA Neurology (Impact Factor: 7.42). 09/2005; 62(8):1250-5. DOI: 10.1001/archneur.62.8.noc40425
Source: PubMed


Since the Food and Drug Administration approved DBS, there has been a surge in the number of centers providing the procedure. There is currently no consensus regarding appropriate screening procedures, necessary training of individuals providing the therapy, the need for an interdisciplinary team, or guidelines for the management of complications. An increasing number of patients come to experienced DBS centers after unsatisfactory results from DBS surgery. An attempt is made herein to evaluate the reasons for DBS failure in a series of such patients and to make recommendations to improve overall DBS outcomes.
To improve outcomes of deep brain stimulation (DBS) surgery by analyzing a series of patients who had suboptimal results from DBS.
Forty-one consecutive patients complaining of suboptimal results from DBS surgery came to the University of Florida Movement Disorders Center, or to Beth Israel Movement Disorders Center, over a 24-month period. All patients had undergone implantation of DBS devices at outside medical centers. Each patient was evaluated by a movement disorders neurologist, and the complete medical record was reviewed. The DBS device for each patient was interrogated for adverse effects and programmed for maximal benefit. Postoperative imaging studies were evaluated whenever possible.
The average age of patients was 63.4 years (range, 49-84 years). The indication for surgery (by record review) included 9 patients with essential tremor, 31 with Parkinson disease, and 1 with dystonia. The diagnoses after referral examination included 5 with essential tremor, 26 with Parkinson disease, 3 with Parkinson disease and dementia, 1 with Parkinson disease and essential tremor, 1 with corticobasal degeneration, 1 with dystonia, 2 with multiple system atrophy, 1 with progressive supranuclear palsy, and 1 with myoclonus. Issues related to inadequate preoperative screening: Thirty (73%) of 41 patients saw a movement disorders specialist prior to DBS implantation. Fourteen (34%) patients had neuropsychological testing, 4 (10%) did not have testing, and in 23 cases (56%), it could not be determined whether or not they were tested. Five (12%) of 41 patients had an inadequate medication trial, and 5 patients (12%) had significant cognitive dysfunction prior to their DBS implantation. Surgical and device-related complications: Nineteen (46%) of 41 patients had suboptimally placed electrodes. Seven electrodes (17%) were replaced with improvement. Three patients' devices had failed due to end of battery life, 2 had infections, and 1 had a fractured lead. Programming and medication adjustments: Seven (17%) of 41 patients had no or poor access to programming. Two patients (5%) moved, and 2 physicians (5%) moved, creating issues with access to care. Eight patients (20%) required local follow-up (they flew to remote centers to have the surgery performed). Fifteen patients (37%) were inadequately programmed and improved significantly with reprogramming. Six patients (15%) experienced partial improvement with reprogramming, and 21 patients (51%) failed to improve despite extensive reprogramming. Thirty patients (73%) benefited from medication changes, 4 (10%) had antidepressants added to their regimens, and 1 (2%) had donepezil hydrochloride added. One patient's carbidopa/levodopa (2%) was restarted after complete discontinuation. Outcomes: With the various postoperative interventions described, 21 (51%) of 41 patients had good outcomes, 6 (15%) had modest clinical improvement, and 14 (34%) did not improve.
With appropriate intervention, 51% of patients who complained of "failed" DBS procedures ultimately had good outcomes. Thirty-four percent of these patients had persistently poor outcomes despite maximal intervention. This case series provides important insights into reasons for "DBS failure" and proposes strategies to manage patients with DBS more effectively.

Download full-text


Available from: Michele Tagliati,
1 Follower
41 Reads
    • "Implantable pulse generators (IPGs) powered by non-rechargeable primary batteries last 3–5 yr (Ondo et al 2007), which is much shorter than the required duration of treatment. Consequently, patients must undergo repeated IPG replacement surgeries, obligating them to incur repeatedly the risks associated with surgery, which include infection (Boviatsis et al 2010, Bronstein et al 2011) and misprogramming (Okun et al 2005). Rechargeable IPGs, which have longer predicted battery lives, are an alternative to primary-cell devices. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45-84% less power. Similar gains in selectivity were evident with the optimized electrodes: 50% of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44 to 48% with the standard electrode to 0-14% with bipolar designs; 50% of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53 to 55% with the standard electrode to 1-5% with an array of cathodes; and, 50% of TAs could be activated while reducing activation of AOPs from 43 to 100% with the standard electrode to 2-15% with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes.
    Journal of Neural Engineering 07/2015; 12(4):046030. DOI:10.1088/1741-2560/12/4/046030 · 3.30 Impact Factor
    • "This is the most important step towards better and consistent result for DBS. DBS surgery failures of more than 30% have been seen due to inappropriate indication(s) for surgery.[35] An individual risk-benefit evaluation for each patient must be considered by approaching via a multidisciplinary team, involving a neurosurgeon, a neurologist, a neuropsychologist, an internist, a neuropsychiatrist, and a neurophysiologist. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ablative intracranial surgery for Parkinson's disease has advanced to embedding electrodes into precise areas of the basal ganglia. Electrode implantation surgery, referred to as deep brain stimulation (DBS), is preferred in view of its reversibility, adjustability, and capability to be safely performed bilaterally. DBS is been increasingly used for other movement disorders, intractable tremors epilepsy, and sometimes chronic pain. Anesthesiologists need to amalgamate the knowledge of neuroanatomical structures and surgical techniques involved in placement of microelectrodes in defined cerebral target areas. Perioperative verbal communication with the patient during the procedure is quintessential and may attenuate the need for pharmacological agents. This review will endeavor to assimilate the present knowledge regarding the patient selection, available/practiced anesthesia regimens, and perioperative complications after our thorough search for literature published between 1991 and 2013.
    North American Journal of Medical Sciences 08/2014; 6(8):359-69. DOI:10.4103/1947-2714.139281
  • Source
    • "Clinical DBS programming is an iterative process in which stimulation parameters are adjusted in order to maximize therapeutic benefits while minimizing side effects (Morishita et al., 2013) Although many DBS patients require minimal stimulation adjustment following surgery, many more require several months of regular parameter adjustments before optimal therapeutic results can be achieved (Okun et al., 2005; Bronstein et al., 2011; Kluger et al., 2011). However, sustaining these therapeutic benefits requires subsequent adjustment of stimulation parameters every few months (Mayberg et al., 2000, 2005; Deuschl et al., 2006; Moro et al., 2006; Frankemolle et al., 2010; Mure et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a "smart" neuroprosthetic system for treatment of neurologic and psychiatric disorders.
    Frontiers in Neuroscience 06/2014; 8(8):169. DOI:10.3389/fnins.2014.00169 · 3.66 Impact Factor
Show more