Article

Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers.

Department of Neurology, University of Florida, Movement Disorders Center, McKnight Brain Institute, Gainesville, FL 32610, USA.
JAMA Neurology (Impact Factor: 7.01). 09/2005; 62(8):1250-5. DOI: 10.1001/archneur.62.8.noc40425
Source: PubMed

ABSTRACT Since the Food and Drug Administration approved DBS, there has been a surge in the number of centers providing the procedure. There is currently no consensus regarding appropriate screening procedures, necessary training of individuals providing the therapy, the need for an interdisciplinary team, or guidelines for the management of complications. An increasing number of patients come to experienced DBS centers after unsatisfactory results from DBS surgery. An attempt is made herein to evaluate the reasons for DBS failure in a series of such patients and to make recommendations to improve overall DBS outcomes.
To improve outcomes of deep brain stimulation (DBS) surgery by analyzing a series of patients who had suboptimal results from DBS.
Forty-one consecutive patients complaining of suboptimal results from DBS surgery came to the University of Florida Movement Disorders Center, or to Beth Israel Movement Disorders Center, over a 24-month period. All patients had undergone implantation of DBS devices at outside medical centers. Each patient was evaluated by a movement disorders neurologist, and the complete medical record was reviewed. The DBS device for each patient was interrogated for adverse effects and programmed for maximal benefit. Postoperative imaging studies were evaluated whenever possible.
The average age of patients was 63.4 years (range, 49-84 years). The indication for surgery (by record review) included 9 patients with essential tremor, 31 with Parkinson disease, and 1 with dystonia. The diagnoses after referral examination included 5 with essential tremor, 26 with Parkinson disease, 3 with Parkinson disease and dementia, 1 with Parkinson disease and essential tremor, 1 with corticobasal degeneration, 1 with dystonia, 2 with multiple system atrophy, 1 with progressive supranuclear palsy, and 1 with myoclonus. Issues related to inadequate preoperative screening: Thirty (73%) of 41 patients saw a movement disorders specialist prior to DBS implantation. Fourteen (34%) patients had neuropsychological testing, 4 (10%) did not have testing, and in 23 cases (56%), it could not be determined whether or not they were tested. Five (12%) of 41 patients had an inadequate medication trial, and 5 patients (12%) had significant cognitive dysfunction prior to their DBS implantation. Surgical and device-related complications: Nineteen (46%) of 41 patients had suboptimally placed electrodes. Seven electrodes (17%) were replaced with improvement. Three patients' devices had failed due to end of battery life, 2 had infections, and 1 had a fractured lead. Programming and medication adjustments: Seven (17%) of 41 patients had no or poor access to programming. Two patients (5%) moved, and 2 physicians (5%) moved, creating issues with access to care. Eight patients (20%) required local follow-up (they flew to remote centers to have the surgery performed). Fifteen patients (37%) were inadequately programmed and improved significantly with reprogramming. Six patients (15%) experienced partial improvement with reprogramming, and 21 patients (51%) failed to improve despite extensive reprogramming. Thirty patients (73%) benefited from medication changes, 4 (10%) had antidepressants added to their regimens, and 1 (2%) had donepezil hydrochloride added. One patient's carbidopa/levodopa (2%) was restarted after complete discontinuation. Outcomes: With the various postoperative interventions described, 21 (51%) of 41 patients had good outcomes, 6 (15%) had modest clinical improvement, and 14 (34%) did not improve.
With appropriate intervention, 51% of patients who complained of "failed" DBS procedures ultimately had good outcomes. Thirty-four percent of these patients had persistently poor outcomes despite maximal intervention. This case series provides important insights into reasons for "DBS failure" and proposes strategies to manage patients with DBS more effectively.

Download full-text

Full-text

Available from: Michele Tagliati, Jul 04, 2015
1 Follower
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exciting development of ultra-high resolution 7Tesla (T) magnetic resonance imaging (MRI) has made it possible to clearly visualize and delineate the subthalamic nucleus (STN). Ultra-high resolution MRI provides a first step in the ongoing improvement of imaging techniques rendering it likely that in the near future specific subareas of small brain nuclei such as the STN can be visualized. These developments can contribute to improve clinical imaging, allowing even more accurate targeting of the STN. This is interesting in view of putative limbic, associative, and sensomotoric subdivisions within the STN. The concept of anatomically distinct subdivisions is attractive, both from an anatomical as well as a clinical perspective. However, we argue that the current leading hypothesis of three STN subdivisions is based on low numbers of clinical observations and primate tracing studies. 7T imaging provides us with markers that could potentially help us to distinguish subdivisions, but our preliminary findings do not indicate the existence of subdivisions. In our opinion additional research is needed. As a consequence the tripartite hypothesis should therefore still be a topic of debate. In view of the possible clinical implications, we would like to raise the question whether anatomical evidence on the topological organization within the STN points towards delineated subdivisions, or an organization without strict anatomical boundaries or septa. The latter would require a revision of the current tripartite hypothesis of the human STN.
    NeuroImage 03/2014; 95. DOI:10.1016/j.neuroimage.2014.03.010 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep brain stimulation (DBS) is considered an established treatment for advanced Parkinson’s disease (PD). Nevertheless, some questions remain open. As different nuclei have been stimulated producing a wide number of effects on motor and non-motor symptoms, the first question relates to the issue of which target should be considered. Long-term and convincing data are available on the effects of subthalamus (STN), globus pallidus internus (GPi), and nucleus ventralis intermedius (Vim) of thalamus whereas less evidences have been collected on other deep brain targets, such as pedunculopontine nucleus, centromedian/parafascicular thalamic complex or zona incerta. A recent trial comparing STN and GPi DBS has not shown any substantial differences between both targets and the reasons for this are still unknown. Indeed most clinicians prefer the STN because of its better motor effect and the potential to reduce drug treatment as suggested by several smaller studies. On the other hand, preliminary data suggest a possibly better effect of GPi-stimulation on gait. Smaller studies also suggest advantages for dyskinetic and possibly older patients for the Gpi as a target. The next question is if earlier treatment may improve the course of PD. A small pilot study was positive and modeling of the effects of DBS earlier in the course of the disease supported such an approach but the pivotal study is still lacking.
    12/2012; 2(4):211–219. DOI:10.1016/j.baga.2012.07.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters.
    Journal of Neural Engineering 04/2012; 9(3):036004. DOI:10.1088/1741-2560/9/3/036004 · 3.42 Impact Factor