Differential cellular expression of galectin family mRNAs in the epithelial cells of the mouse digestive tract.

Laboratory of Cytology and Histology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan.
Journal of Histochemistry and Cytochemistry (Impact Factor: 2.26). 12/2005; 53(11):1323-34. DOI: 10.1369/jhc.5A6685.2005
Source: PubMed

ABSTRACT Galectin is an animal lectin that recognizes beta-galactosides of glycoconjugates and is abundant in the gut. This study revealed the cellular expression of galectin subtypes throughout the mouse digestive tract by in situ hybridization. Signals for five subtypes (galectin-2, -3, -4/6, and -7) were detected exclusively in the epithelia. In the glandular stomach, galectin-2 and -4/6 were predominantly expressed from gastric pits to neck of gastric glands, where mucous cells were the main cellular sources. The small intestine exhibited intense, maturation-associated expressions of galectin-2, -3, and -4/6 mRNAs. Galectin-2 was intensely expressed from crypts to the base of villi, whereas transcripts of galectin-3 gathered at villous tips. Signals for galectin-4/6 were most intense at the lower half of villi. Galectin-2 was also expressed in goblet cells of the small intestine but not in those of the large intestine. In the large intestine, galectin-4/6 predominated, and the upper half of crypts simultaneously contained transcripts of galectin-3. Stratified epithelium from the lip to forestomach and anus intensely expressed galectin-7 with weak expressions of galectin-3. Because galectins in the digestive tract may be multi-functional, information on their cell/stage-specific expression contributes to a better understanding of the functions and pathological involvements of galectins.

  • Source 01/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-3 belongs to a family of highly conserved animal lectins characterized by their ability to recognize multiple N-acetyllactosamine sequences, which can be displayed on both N- and O-glycans on cell surface glycoconjugates. Although first identified in macrophages, galectin-3 (also called "Mac-2, εBP, CBP35 or L-29") has been found to be widely distributed in several tissues and developmental stages where, depending on its extracellular or intracellular localization, it can display a broad diversity of biological functions including immunomodulation, host-pathogen interactions, embryogenesis, angiogenesis, cell migration, wound healing and apoptosis. In spite of the existence of several reviews describing the multifunctional properties of galectin-3, an integrated view of the regulated expression of this glycan-binding protein in different normal tissues is lacking. Here we attempt to summarize and integrate available information on galectin-3 distribution in normal haematopoietic and non-haematopoietic tissues, mainly in adulthood, with only a brief reference to its expression during embryonic stages. In addition, given the multiplicity of biological roles attributed to this protein, a brief description of galectin-3 functions is also included. Understanding how galectin-3 is regulated in normal tissues will contribute to a rational design of approaches aimed at modulating galectin-3 expression and subcellular localization for experimental and therapeutic purposes.
    Histology and histopathology 02/2011; 26(2):247-65. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The galectin-4 protein is mostly expressed in the digestive tract and is associated with lipid raft stabilization, protein apical trafficking, wound healing, and inflammation. While most mammalian species, including humans, have a single Lgals4 gene, some mice have two paralogues: Lgals4 and Lgals6. So far, their significant similarities have hindered the analysis of their respective expression and function. We took advantage of two antibodies that discriminate between the galectin-4 and galectin-6 proteins to document their patterns of expression in the normal and the dextran sodium sulfate (DSS)-damaged digestive tract in the mouse. In the normal digestive tract, their pattern of expression from tongue to colon is quite similar, which suggests functional redundancy. However, the presence of galectin-4, but not galectin-6, in the lamina propria of the DSS-damaged colon, its association with luminal colonic bacteria, and differences in subcellular localization of these proteins suggest that they also have distinct roles in the normal and the damaged mouse digestive tract. Our results provide a rare example of ancestral and derived functions evolving after tandem gene duplication.
    Journal of Histochemistry and Cytochemistry 01/2013; · 2.26 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014