Article

Differential cellular expression of galectin family mRNAs in the epithelial cells of the mouse digestive tract.

Laboratory of Cytology and Histology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo 060-8638, Japan.
Journal of Histochemistry and Cytochemistry (Impact Factor: 2.26). 12/2005; 53(11):1323-34. DOI: 10.1369/jhc.5A6685.2005
Source: PubMed

ABSTRACT Galectin is an animal lectin that recognizes beta-galactosides of glycoconjugates and is abundant in the gut. This study revealed the cellular expression of galectin subtypes throughout the mouse digestive tract by in situ hybridization. Signals for five subtypes (galectin-2, -3, -4/6, and -7) were detected exclusively in the epithelia. In the glandular stomach, galectin-2 and -4/6 were predominantly expressed from gastric pits to neck of gastric glands, where mucous cells were the main cellular sources. The small intestine exhibited intense, maturation-associated expressions of galectin-2, -3, and -4/6 mRNAs. Galectin-2 was intensely expressed from crypts to the base of villi, whereas transcripts of galectin-3 gathered at villous tips. Signals for galectin-4/6 were most intense at the lower half of villi. Galectin-2 was also expressed in goblet cells of the small intestine but not in those of the large intestine. In the large intestine, galectin-4/6 predominated, and the upper half of crypts simultaneously contained transcripts of galectin-3. Stratified epithelium from the lip to forestomach and anus intensely expressed galectin-7 with weak expressions of galectin-3. Because galectins in the digestive tract may be multi-functional, information on their cell/stage-specific expression contributes to a better understanding of the functions and pathological involvements of galectins.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The galectin-4 protein is mostly expressed in the digestive tract and is associated with lipid raft stabilization, protein apical trafficking, wound healing, and inflammation. While most mammalian species, including humans, have a single Lgals4 gene, some mice have two paralogues: Lgals4 and Lgals6. So far, their significant similarities have hindered the analysis of their respective expression and function. We took advantage of two antibodies that discriminate between the galectin-4 and galectin-6 proteins to document their patterns of expression in the normal and the dextran sodium sulfate (DSS)-damaged digestive tract in the mouse. In the normal digestive tract, their pattern of expression from tongue to colon is quite similar, which suggests functional redundancy. However, the presence of galectin-4, but not galectin-6, in the lamina propria of the DSS-damaged colon, its association with luminal colonic bacteria, and differences in subcellular localization of these proteins suggest that they also have distinct roles in the normal and the damaged mouse digestive tract. Our results provide a rare example of ancestral and derived functions evolving after tandem gene duplication.
    Journal of Histochemistry and Cytochemistry 01/2013; · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-1 and galectin-3, β-galactoside-binding lectins, are specifically expressed in the regressing corpus luteum (CL) of mice, however, their function remains unclear. In this study, we examined the effects of prolactin (PRL) and prostaglandin F(2α) (PGF(2α)), two main regulatory molecules of mouse CL function, on galectin expression. In situ hybridization analysis clearly demonstrated an initial increase of galectin-1 in the CL newly formed (CLN) after postpartum ovulation 48 h after compulsory weaning. This was accompanied by a decline in 3β-hydroxysteroid dehydrogenase (3β-HSD) and luteinizing hormone receptor (LH-R) expression, suggesting a withdrawal of PRL stimulation. At 72 h after the weaning, the expression of both galectins in CLN was remarkably increased, being associated with an intense expression of progesterone degradation enzyme (20α-HSD). Compulsory weaning did not significantly alter both galectin expression in the remaining CL of pregnancy (CLP), while PGF(2α) strongly up-regulated both galectin expression only in the remaining CLP which lacked LH-R in postpartum mice. Administration of Bromocriptine, an antagonist for PRL secretion, to non-pregnant cyclic mice induced an accumulation of galectin-1 -but not galectin-3- in all CL of various generations, and additional PRL treatment reduced its accumulation, suggesting a direct suppressive effect of PRL on galectin-1 expression. Although the function and regulatory mechanism of galectin in the CL is not fully understood, PGF(2α) is an excellent candidate which regulates galectin expression but its effect may be abolished by LH-R-mediated signal. PRL withdrawal seems to be necessary for an initiation of luteolysis and the following PGF(2α)-induced galectin expression.
    Reproduction 09/2012; · 3.56 Impact Factor
  • 08/2013;

Full-text (2 Sources)

View
23 Downloads
Available from
May 30, 2014