Article

Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis.

Department of Psychiatry, New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
Neurology (Impact Factor: 8.3). 07/2005; 64(11):1860-7. DOI: 10.1212/01.WNL.0000163856.13524.08
Source: PubMed

ABSTRACT To facilitate image analysis, most recent 2-[18F]fluoro-2-deoxy-d-glucose PET (FDG-PET) studies of glucose metabolism (MRglc) have used automated voxel-based analysis (VBA) procedures but paradoxically none reports hippocampus MRglc reductions in mild cognitive impairment (MCI) or Alzheimer disease (AD). Only a few studies, those using regions of interest (ROIs), report hippocampal reductions. The authors created an automated and anatomically valid mask technique to sample the hippocampus on PET (HipMask).
Hippocampal ROIs drawn on the MRI of 48 subjects (20 healthy elderly [NL], 16 MCI, and 12 AD) were used to develop the HipMask. The HipMask technique was applied in an FDG-PET study of NL (n = 11), MCI (n = 13), and AD (n = 12), and compared to both MRI-guided ROIs and VBA methods.
HipMask and ROI hippocampal sampling produced significant and equivalent MRglc reductions for contrasts between MCI and AD relative to NL. The VBA showed typical cortical effects but failed to show hippocampal MRglc reductions in either clinical group. Hippocampal MRglc was the only discriminator of NL vs MCI (78% accuracy) and added to the cortical MRglc in classifying NL vs AD and MCI vs AD.
The new HipMask technique provides accurate and rapid assessment of the hippocampus on PET without the use of regions of interest. Hippocampal glucose metabolism reductions are found in both mild cognitive impairment and Alzheimer disease and contribute to their diagnostic classification. These results suggest re-examination of prior voxel-based analysis 2-[18F]fluoro-2-deoxy-d-glucose PET studies that failed to report hippocampal effects.

1 Bookmark
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to apply the virtual radial arm maze (VRAM) task to find spatial working memory and reference memory impairments in patients of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). Spatial memory functions between aMCI converters and nonconverters are also compared using VRAM results. We assessed the spatial memory in 20 normal controls, 20 aMCI, and 20 mild AD subjects using VRAM. The Mini-Mental State Examination, Clinical Dementia Rating scale, and other neuropsychological tests were given to the subjects in conjunction with the VRAM test. Scores in working memory errors and reference memory errors were compared among the three groups using repeated measures analysis of variance. In addition, aMCI patients were followed-up after 5 years and surveyed for AD conversion rate. In AD patients, both spatial working and reference memory were impaired. However, in aMCI subjects, only spatial reference memory was impaired. Significant spatial reference memory impairment was found in the aMCI converter group when compared to the nonconverter group. Spatial working memory is less impaired in aMCI while reference memory is similarly damaged in AD. In aMCI patients, more severe spatial reference memory deficit is a neuropsychological marker for AD conversion. VRAM may be well utilized in humans to assess spatial memory in normal aging, in aMCI, and in AD.
    Neuropsychiatric Disease and Treatment 01/2014; 10:653-660. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence to suggest that diet, one of the most important modifiable environmental factors, may play a role in preventing or delaying cognitive decline and Alzheimer's disease (AD). This study examines the relationship between dietary nutrients and brain biomarkers of AD in cognitively normal individuals (NL) with and without AD risk factors.
    BMJ Open 06/2014; 4(6):e004850. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
    Brain 03/2014; · 10.23 Impact Factor