Article

Age- and sex-related effects on the neuroanatomy of healthy elderly.

Groupe d'Imagerie Neurofonctionnelle, UMR 6194, CNRS, CEA, Universités de Caen et Paris 5, GIP Cyceron, BP5229, F-14074 Caen, France.
NeuroImage (Impact Factor: 6.13). 08/2005; 26(3):900-11. DOI: 10.1016/j.neuroimage.2005.02.042
Source: PubMed

ABSTRACT Effects of age and sex, and their interaction on the structural brain anatomy of healthy elderly were assessed thanks to a cross-sectional study of a cohort of 662 subjects aged from 63 to 75 years. T1- and T2-weighted MRI scans were acquired in each subject and further processed using a voxel-based approach that was optimized for the identification of the cerebrospinal fluid (CSF) compartment. Analysis of covariance revealed a classical neuroanatomy sexual dimorphism, men exhibiting larger gray matter (GM), white matter (WM), and CSF compartment volumes, together with larger WM and CSF fractions, whereas women showed larger GM fraction. GM and WM were found to significantly decrease with age, while CSF volume significantly increased. Tissue probability map analysis showed that the highest rates of GM atrophy in this age range were localized in primary cortices, the angular and superior parietal gyri, the orbital part of the prefrontal cortex, and in the hippocampal region. There was no significant interaction between "Sex" and "Age" for any of the tissue volumes, as well as for any of the tissue probability maps. These findings indicate that brain atrophy during the seventh and eighth decades of life is ubiquitous and proceeds at a rate that is not modulated by "Sex".

0 Bookmarks
 · 
209 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In magnetic resonance imaging based brain morphometry, Gaussian smoothing is often applied to increase the signal-to-noise ratio and to increase the detection power of statistical parametric maps. However, most existing studies used a single smoothing filter without adequately justifying their choices. In this article, we want to determine the extent for which performing a morphometry analysis using multiple smoothing filters, namely conducting a scale space search, improves or decreases the detection power. We first compared scale space search with single-filter analysis through a simulated population study. The multiple comparisons in our four-dimensional scale space searches were corrected for using a unified P-value approach. Our results illustrate that, compared with a single-filter analysis, a scale space search analysis can properly capture the variations in analysis results caused by variations in smoothing, and more importantly, it can obviously increase the sensitivity for detecting brain morphometric changes. We also show that the cost of an increased critical threshold for conducting a scale space search is very small. In the second experiment, we investigated age and gender effects on cortical volume, thickness, and surface area in 104 normal subjects using scale space search. The obtained results provide a perspective of scale space theory on the morphological changes with age and gender. These results suggest that, in exploratory studies of aging, gender, and disease, conducting a scale space search is essential, if we are to produce a complete description of the structural changes or abnormalities associated with these dimensions.
    Human Brain Mapping 01/2013; 34(9):2113-28. DOI:10.1002/hbm.22050 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To characterize the neuroanatomical changes in healthy older adults is important to differentiate pathological from normal brain structural aging. The present study investigated the annualized rate of GM atrophy in a large sample of older participants, focusing on the hippocampus, and searching for modulation by age and sex. In this 4-year longitudinal community cohort study, we used a VBM analysis to estimate the annualized rate of GM loss, at both the global and regional levels, in 1,172 healthy older adults (65-82 years) scanned at 1.5T. The global annualized rate of GM was -4.0 cm3/year (-0.83%/year). The highest rates of regional GM loss were found in the frontal and parietal cortices, middle occipital gyri, temporal cortex and hippocampus. The rate of GM atrophy was higher in women (-4.7 cm3/year, -0.91%/year) than men (-3.3 cm3/year, -0.65%/year). The global annualized rate of GM atrophy remained constant throughout the age range of the cohort, in both sexes. This pattern was replicated at the regional level, with the exception of the hippocampi, which showed a rate of GM atrophy that accelerated with age (2.8%/year per year of age) similarly for men and women. The present study reports a global and regional description of the annualized rate of grey matter loss and its evolution after the age of 65. Our results suggest greater anatomical vulnerability of women in late life and highlight a specific vulnerability of the hippocampus to the aging processes after 65 years of age.
    PLoS ONE 12/2014; 9(12):e114478. DOI:10.1371/journal.pone.0114478 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the cross-sectional and longitudinal effects of tobacco smoking on brain atrophy in a large cohort of healthy elderly participants (65–80 years). MRI was used for measuring whole brain (WB), gray matter (GM), white matter (WM), and hippocampus (HIP) volumes at study entry time (baseline, N = 1451), and the annualized rates of variation of these volumes using a 4-year follow-up MRI in a subpart of the cohort (N = 1111). Effects of smoking status (never, former, or current smoker) at study entry and of lifetime tobacco consumption on these brain phenotypes were studied using sex-stratified AN(C)OVAs, including other health parameters as covariates. At baseline, male current smokers had lower GM, while female current smokers had lower WM. In addition, female former smokers exhibited reduced baseline HIP, the reduction being correlated with lifetime tobacco consumption. Longitudinal analyses demonstrated that current smokers, whether men or women, had larger annualized rates of HIP atrophy, as compared to either non or former smokers, independent of their lifetime consumption of tobacco. There was no effect of smoking on the annualized rate of WM loss. In all cases, measured sizes of these tobacco-smoking effects were of the same order of magnitude than those of age, and larger than effect sizes of any other covariate. These results demonstrate that tobacco smoking is a major factor of brain aging, with sex- and tissue specific effects, notably on the HIP annualized rate of atrophy after the age of 65.
    Frontiers in Aging Neuroscience 11/2014; 6:299. DOI:10.3389/fnagi.2014.00299 · 2.84 Impact Factor

Full-text (2 Sources)

Download
144 Downloads
Available from
Jun 2, 2014