Article

Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins.

Chiron Corporation, 4560 Horton St., Mail Stop 4.3, Emeryville, California 94608, USA.
Journal of Virology (Impact Factor: 5.08). 08/2005; 79(13):8189-200. DOI: 10.1128/JVI.79.13.8189-8200.2005
Source: PubMed

ABSTRACT DNA vaccines have been used widely in experimental primate models of human immunodeficiency virus (HIV), but their effectiveness has been limited. In this study, we evaluated three technologies for increasing the potency of DNA vaccines in rhesus macaques. These included DNA encoding Sindbis virus RNA replicons (pSINCP), cationic poly(lactide-co-glycolide) (PLG) microparticles for DNA delivery, and recombinant protein boosting. The DNA-based pSINCP replicon vaccines encoding HIV Gag and Env were approximately equal in potency to human cytomegalovirus (CMV) promoter-driven conventional DNA vaccines (pCMV). The PLG microparticle DNA delivery system was particularly effective at enhancing antibody responses induced by both pCMV and pSINCP vaccines and had less effect on T cells. Recombinant Gag and Env protein boosting elicited rapid and strong recall responses, in some cases to levels exceeding those seen after DNA or DNA/PLG priming. Of note, Env protein boosting induced serum-neutralizing antibodies and increased frequencies of gamma interferon-producing CD4 T cells severalfold. Thus, PLG microparticles are an effective means of delivering DNA vaccines in nonhuman primates, as demonstrated for two different types of DNA vaccines encoding two different antigens, and are compatible for use with DNA prime-protein boost regimens.

0 Bookmarks
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was undertaken to determine immune response and protection efficacy of a spike (S) protein fragment containing neutralizing epitopes (4F/4R) of turkey coronavirus (TCoV) by priming with DNA vaccine and boosting with the recombinant protein from the corresponding DNA vaccine gene segment. Turkeys were vaccinated by priming with either one dose (G1-750DP) or two doses (G3-750DDP) of 750μg DNA vaccine expressing 4F/4R S fragment and boosting with one dose of 200μg 4F/4R S fragment. One dose of 100μg DNA vaccine mixed with polyethyleneimine (PEI) and sodium hyaluronate (HA) followed by one dose of 750μg DNA vaccine and one dose of 200μg 4F/4R S fragment were given to the turkeys in group G2-100DPH. After infectious challenge by TCoV, clinical signs and TCoV detected by immunofluorescence antibody (IFA) assay were observed in less number of turkeys in vaccination groups than that in challenge control groups. TCoV viral RNA loads measured by quantitative real-time reverse transcription-PCR were lower in vaccinated turkeys than those in challenge control turkeys. The turkeys in G3-750DDP produced the highest level of TCoV S protein-specific antibody and virus neutralization (VN) titer. Comparing to the turkeys in G1-750DP, significantly less TCoV were detected by IFA in the turkeys in G2-100DPH receiving an extra dose of 100μg DNA mixed with PEI and HA. The results indicated that DNA-prime protein-boost DNA vaccination regimen targeting TCoV S fragment encompassing neutralizing epitopes induced humoral immune response and partially protected turkeys against infectious challenge by TCoV.
    Veterinary Immunology and Immunopathology 02/2013; · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first clinical trial of an MF59(®)-adjuvanted influenza vaccine (Novartis) was conducted 20 years ago in 1992. The product that emerged (Fluad(®), Novartis) was licensed first in Italy in 1997 and is now licensed worldwide in 30 countries. US licensure is expected in the coming years. By contrast, many alternative adjuvanted vaccines have failed to progress. The key decisions that allowed MF59 to succeed in such a challenging environment are highlighted here and the lessons that were learned along the way are discussed. MF59 was connected to vaccines that did not succeed and was perceived as a 'failure' before it was a success. Importantly, it never failed for safety reasons and was always well tolerated. Even when safety issues have emerged for alternative adjuvants, careful analysis of the substantial safety database for MF59 have shown that there are no significant concerns with widespread use, even in more 'sensitive' populations.
    Expert Review of Vaccines 01/2013; 12(1):13-30. · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of optimal antigen(s) and adjuvant combination(s) to elicit potent, protective, and long-lasting immunity has been a major challenge for the development of effective vaccines against chronic viral pathogens, such as HIV-1, for which there are not yet any licensed vaccines. Here we describe the use of a novel adjuvant approach employing Carbopol 971P(®) NF (hereafter referred to as Carbopol971P), a cross-linked polyanionic carbomer, in combination with the Novartis proprietary oil-in-water adjuvant, MF59, as a potentially safe and effective adjuvant to augment humoral immune responses to the HIV-1 envelope glycoprotein (Env). Intramuscular immunization of small animals with recombinant Env glycoprotein (gp140) formulated in Carbopol971P plus MF59 gave significantly higher titers of binding and virus neutralizing antibodies as compared to immunization using gp140 with either MF59 or Carbopol971P alone. In addition, the antibodies generated were of higher avidity. Importantly, the use of Carbopol971P plus MF59 did not cause any serious adverse reactions or any obvious health problems in animals upon intramuscular administration. Hence, the Carbopol971P plus MF59 adjuvant formulation may provide a benefit for future vaccine applications.
    Vaccine 02/2012; 30(17):2749-59. · 3.77 Impact Factor

Full-text (2 Sources)

View
8 Downloads
Available from
May 29, 2014