Article

Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease.

Center of Neurology and Hertie-Institute for Clinical Brain Research, Leicester, UK.
Human Molecular Genetics (Impact Factor: 6.68). 09/2005; 14(15):2099-111. DOI: 10.1093/hmg/ddi215
Source: PubMed

ABSTRACT Recently targeted disruption of Omi/HtrA2 has been found to cause neurodegeneration and a parkinsonian phenotype in mice. Using a candidate gene approach, we performed a mutation screening of the Omi/HtrA2 gene in German Parkinson's disease (PD) patients. In four patients, we identified a novel heterozygous G399S mutation, which was absent in healthy controls. Moreover, we identified a novel A141S polymorphism that was associated with PD (P<0.05). Both mutations resulted in defective activation of the protease activity of Omi/HtrA2. Immunohistochemistry and functional analysis in stably transfected cells revealed that S399 mutant Omi/HtrA2 and to a lesser extent, the risk allele of the A141S polymorphism induced mitochondrial dysfunction associated with altered mitochondrial morphology. Cells overexpressing S399 mutant Omi/HtrA2 were more susceptible to stress-induced cell death than wild-type. On the basis of functional genomics, our results provide a novel link between mitochondrial dysfunction and neurodegeneration in PD.

1 Bookmark
 · 
281 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative disorders affect almost 30 million individuals leading to disability and death. These disorders are characterized by pathological changes in disease-specific areas of the brain and degeneration of distinct neuron subsets. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear similar, suggesting common neurodegenerative pathways. Apoptosis seems to play a key role in the progression of several neurologic disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis as demonstrated by studies on animal models and cell lines. On the other hand, research on human brains reported contradictory results. However, many dying neurons have been detected in autoptic brains of patients with neurodegenerative diseases, and these conditions are often associated with significant cell loss accompanied by typical morphological features of apoptosis such as chromatin condensation, DNA fragmentation, and activation of cysteine-proteases called caspases. Cell death and neurodegenerative conditions have been linked to oxidative stress and imbalance between generation of free radicals and antioxidant defenses. Multiple sclerosis, stroke, and neurodegenerative diseases have been associated with reactive oxygen species and nitric oxide. Here we present an overview of the involvement of neuronal apoptosis and oxidative stress in the most important neurodegenerative diseases, mainly focusing the attention on several genetic disorders, discussing the interaction between primary genetic abnormalities and the apoptotic pathways.
    Journal of Alzheimer's disease: JAD 07/2014; · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of the mitochondrial protease activity of Omi causes mitochondrial dysfunction, neurodegeneration with parkinsonian features and premature death in mnd2 (motor neuron degeneration 2) mice. However, the detailed mechanisms underlying this pathology remain largely unknown. Here, we report that Omi participates in the process of mitochondrial biogenesis, which has been linked to several neurodegenerative diseases. The mitochondrial biogenesis is deficit in mnd2 mice, evidenced by severe decreases of mitochondrial components, mitochondrial DNA and mitochondrial density. Omi cleaves glycogen synthase kinase 3β (GSK3β), a kinase promoting PPARγ coactivator-1α (PGC-1α) degradation, to regulate PGC-1α, a factor important for the mitochondrial biogenesis. In mnd2 mice, GSK3β abundance is increased and PGC-1α abundance is decreased significantly. Inhibition of GSK3β by SB216763 or overexpression of PGC-1α can restore mitochondrial biogenesis in mnd2 mice or Omi-knockdown N2a cells. Furthermore, there is a significant improvement of the movement ability of mnd2 mice after SB216763 treatment. Thus, our study identified Omi as a novel regulator of mitochondrial biogenesis, involving in Omi protease-deficient-induced neurodegeneration.
    Cell Death & Disease 08/2014; 5:e1373. · 5.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HTRA2, a serine protease in the intermembrane space, has important functions in mitochondrial stress signaling while its abnormal activity may contribute to the development of Parkinson's disease. Mice with a missense or null mutation of Htra2 fail to thrive, suffer striatal neuronal loss, and a parkinsonian phenotype that leads to death at 30-40 days of age. While informative, these mouse models cannot separate neural contributions from systemic effects due to the complex phenotypes of HTRA2 deficiency. Hence, we developed mice carrying a Htra2-floxed allele to query the consequences of tissue-specific HTRA2 deficiency. We found that mice with neural-specific deletion of Htra2 exhibited atrophy of the thymus and spleen, cessation to gain weight past postnatal (P) day 18, neurological symptoms including ataxia and complete penetrance of premature death by P40. Histologically, increased apoptosis was detected in the cerebellum, and to a lesser degree in the striatum and the entorhinal cortex, from P25. Even earlier at P20, mitochondria in the cerebella already exhibited abnormal morphology, including swelling, vesiculation, and fragmentation of the cristae. Furthermore, the onset of these structural anomalies was accompanied by defective processing of OPA1, a key molecule for mitochondrial fusion and cristae remodeling, leading to depletion of the L-isoform. Together, these findings suggest that HTRA2 is essential for maintenance of the mitochondrial integrity in neurons. Without functional HTRA2, a lifespan as short as 40 days accumulates a large quantity of dysfunctional mitochondria that contributes to the demise of mutant mice.
    PLoS ONE 12/2014; 9(12):e115789. · 3.53 Impact Factor