Article

Plastins: versatile modulators of actin organization in (patho)physiological cellular processes

Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
Acta Pharmacologica Sinica (Impact Factor: 2.5). 08/2005; 26(7):769-79. DOI: 10.1111/j.1745-7254.2005.00145.x
Source: PubMed

ABSTRACT Many actin-binding proteins are expressed in eukaryotic cells. These polypeptides assist in stabilizing and rearranging the organization of the actin cytoskeleton in response to external stimuli, or during cell migration and adhesion. Here we review a particular set of actin-binding proteins called plastins. Plastins (also called fimbrins) belong to a subclass of actin-binding proteins known as actin bundling proteins. Three isoforms have been characterized in mammals: T-plastin is expressed in cells from solid tissue, whereas L-plastin occurs predominantly in hematopoietic cells. The third isoform, I-plastin, is specifically expressed in the small intestine, colon and kidney. These proteins share the unique property of cross-linking actin filaments into tight bundles. Although plastins are primarily involved in regulation of the actin cytoskeleton, they possess some unique features. For instance, they are implicated in invasion by pathogenic bacteria such as Shigella flexneri and Salmonella typhimurium. Also, L-plastin plays an important role in leukocyte function. T-plastin, on the other hand, is possibly involved in DNA repair. Finally, both T- and L-plastin are implicated in several diseases, and L-plastin is considered to be a valuable marker for cancer.

0 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The function of the extracellular matrix (ECM) in the tumor microenvironment is not limited to forming a barrier against tumor invasion. As demonstrated in pathological specimens, cholangiocarcinoma samples exhibit an enrichment of the ECM surrounding the tumor cells. In this study, we examined involvement of the ECM in the regulation of the invasiveness of cholangiocarcinoma cells. The RMCCA1 cholangiocarcinoma cell line was cultured in culture plates either with or without a coating of reconstituted ECM basement membrane preparation (BD Matrigel matrix). In vitro invasion assays were then performed. In addition, the protein expression profile of the cell line was examined using two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry. The proteins expressed and their functional associations with cancer progression were determined. Culturing the RMCCA1 cell line in the BD Matrigel matrix induced cell invasion. Numerous proteins were induced by culturing the RMCCA1 cells in the matrix gel. The expression of L-plastin, an actin-binding protein, was significantly upregulated. The knockdown of L-plastin expression by siRNA silencing significantly suppressed the cellular response to matrix gel-stimulated cancer cell invasion. The ECM promotes the invasiveness of cholangiocarcinoma cells by upregulating L-plastin. These findings suggest the potential exploitation of this mechanism as a means of inhibiting the invasiveness of cholangiocarcinoma cells.
    Oncology letters 09/2014; 8(3):993-1000. DOI:10.3892/ol.2014.2239 · 0.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background There are no reports of proteomic analyses of inflamed islets in type 1 diabetes. Procedures Proteins expressed in the islets of enterovirus-associated fulminant type 1 diabetes (FT1DM) with extensive insulitis were identified by laser-capture microdissection mass spectrometry using formalin-fixed paraffin-embedded pancreatic tissues. Results Thirty-eight proteins were identified solely in FT1DM islets, most of which have not been previously linked to type 1 diabetes. Five protein-protein interacting clusters were identified, and the cellular localization of selected proteins was validated immunohistochemically. Migratory activity-related proteins, including plastin-2 (LCP1), moesin (MSN), lamin-B1 (LMNB1), Ras GTPase-activating-like protein (IQGAP1) and others, were identified in CD8+ T cells and CD68+ macrophages infiltrated to inflamed FT1DM islets. Proteins involved in successive signaling in innate/adaptive immunity were identified, including SAM domain and HD domain-containing protein 1 (SAMHD1), Ras GTPase-activating-like protein (IQGAP1), proteasome activator complex subunit 1 (PSME1), HLA class I histocompatibility antigen (HLA-C), and signal transducer and activator of transcription 1-alpha/beta (STAT1). Angiogenic (thymidine phosphorylase (TYMP)) and anti-angiogenic (tryptophan-tRNA ligase (WARS)) factors were identified in migrating CD8+ T cells and CD68+ macrophages. Proteins related to virus replication and cell proliferation, including probable ATP-dependent RNA helicase DEAD box helicase 5 (DDX5) and heterogeneous nuclear ribonucleoprotein H (HNRNPH1), were identified. The anti-apoptotic protein T-complex protein 1 subunit epsilon (CCT5), the anti-oxidative enzyme 6-phosphogluconate dehydrogenase (PDG), and the anti-viral and anti-apoptotic proteins serpin B6 (SERPINB6) and heat shock 70 kDa protein1-like (HSPA1L), were identified in FT1DM-affected islet cells. Conclusion The identified FT1DM-characterizing proteins include those involved in aggressive beta cell destruction through massive immune cell migration and proteins involved in angiogenesis and islet vasculature bleeding, cell repair, and anti-inflammatory processes. Several target proteins for future type 1 diabetes interventions were identified.
    PLoS ONE 10/2014; 9(10):e107664. DOI:10.1371/journal.pone.0107664 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effects of mycophenolate mofetil (MMF) on kidney function and on protein phosphorylation in a mouse model for the human Alport syndrome. COL4A3-deficient (COL4A3-/-) mice were randomly allocated to receive a placebo (PLC COL4A3-/-) or MMF treatment (MMF COL4A3-/-). Wild type mice (WT) were used as controls. Changes in serum creatinine, total protein and blood urea nitrogen (BUN), concentrations of mycophenolic acid (MPA) and its glucuronide metabolite (MPAG), serum protein electrophoresis, urine dipstick chemistry and sediment were measured. Changes in the phosphorylation status of renal proteins and histology were analyzed. MMF influenced kidney function and protein phosphorylation. Serum creatinine and BUN were lower in MMF treated compared to PLC treated COL4A3-/- mice. Serum albumin and alpha-1 globulins were significantly decreased while serum creatinine, alpha-2 globulins, urine dipstick protein, leukocyte esterase, hemoglobin and red blood cells were all increased in both COL4A3-/- groups compared to WT. Differential 2DE-gel analysis identified six phosphorylated kidney protein spots that were significantly altered by MMF. These data suggest that the MMF treatment in this murine model moderately improved kidney function and reversed the phosphorylation status of six renal phosphoprotein spots to that seen in WT mice.
    Proteome Science 12/2014; 12(1):56. DOI:10.1186/s12953-014-0056-z · 1.88 Impact Factor

Preview

Download
4 Downloads
Available from