Article

Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores.

Molecular, Cell and Developmental Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
Current Biology (Impact Factor: 9.92). 07/2005; 15(12):1078-89. DOI: 10.1016/j.cub.2005.05.026
Source: PubMed

ABSTRACT In mitosis, a mechanochemical system recognizes tension that is generated by bipolar microtubule attachment to sister kinetochores. This is translated into multiple outputs including the stabilization of microtubule attachments, changes in kinetochore protein dynamics, and the silencing of the spindle checkpoint. How kinetochores sense tension and translate this into various signals represent critical unanswered questions. The kinetochores of chromosomes not under tension are specifically phosphorylated at an epitope recognized by the 3F3/2 monoclonal antibody. Determining the kinase that generates the 3F3/2 phosphoepitope at kinetochores should reveal an important component of this system that regulates mitotic progression.
We demonstrate that Polo-like kinase 1 (Plk1) creates the 3F3/2 phosphoepitope on mitotic kinetochores. In a permeabilized in vitro cell system, the depletion of Xenopus Plk1 from M phase extract leads to the loss of 3F3/2 kinase activity. Purified recombinant Plk1 is sufficient to generate the 3F3/2 phosphoepitope in this system. Using siRNA, we show that the reduction of Plk1 protein levels significantly diminishes 3F3/2 phosphoepitope expression at kinetochores. The consensus phosphorylation sites of Plk1 show strong similarity to the 3F3/2 phosphoepitope sequence determined by phosphopeptide mapping. The inhibition of Plk1 by siRNA alters the normal kinetochore association of Mad2, Cenp-E, Hec1/Ndc80, Spc24, and Cdc20 and induces a spindle-checkpoint-mediated mitotic arrest.
Plk1 generates the 3F3/2 phosphoepitope at kinetochores that are not under tension and contributes to the normal kinetochore association of several key proteins important in checkpoint signaling. Mechanical tension regulates Plk1 accumulation at kinetochores and possibly its kinase activity.

0 Bookmarks
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The spindle checkpoint is a key regulator of chromosome segregation in mitosis and meiosis. Its function is to prevent precocious anaphase onset before chromosomes have achieved bipolar attachment to the spindle. The spindle checkpoint comprises a complex set of signaling pathways that integrate microtubule dynamics, biomechanical forces at the kinetochores, and intricate regulation of protein interactions and post-translational modifications. Historically, many key observations that gave rise to the initial concepts of the spindle checkpoint were carried out in meiotic systems. In contrast with mitosis, the two distinct chromosome segregation events of meiosis present a special challenge for the regulation of checkpoint signaling. Preservation of fidelity in chromosome segregation in meiosis, controlled by the spindle checkpoint, also has significant impact in human health. This review highlights the contributions from meiotic systems in understanding the spindle checkpoint as well as the role of checkpoint signaling in controlling the complex divisions of meiosis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    FEBS Journal 12/2014; DOI:10.1111/febs.13166 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polo-like kinase 1 (PLK1), a critical kinase that regulates multiple steps in mitosis, is overexpressed in diverse human cancers; thus many PLK1 inhibitors have been developed as potential cancer therapeutic agents. One of these compounds, the PLK1-specific inhibitor BI2536, has been investigated as a cytotoxic drug in several cancers, including lung cancer; however, the detailed mechanism by which BI2536 induces defects in cell proliferation of non-small cell lung cancer (NSCLC) has not yet been determined. We found that BI2536 treatment resulted in mitotic arrest due to improper formation of the mitotic spindle and mitotic centrosomes. The unattached kinetochores in BI2536-treated NSCLC cells activated the spindle assembly checkpoint (SAC). The prolonged activation of the SAC led to a type of apoptotic cell death referred to as mitotic catastrophe. Finally, BI2536-treated NSCLC cells show a defect in cell proliferation. Overall, these data indicate that PLK1 inhibition via mitotic disruption represents a potential approach for the treatment of NSCLC. Copyright © 2014. Published by Elsevier Ireland Ltd.
    Cancer Letters 12/2014; 357(2). DOI:10.1016/j.canlet.2014.12.023 · 5.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Faithful chromosome segregation during mitosis is essential for genome integrity and is mediated by the bi-oriented attachment of replicated chromosomes to spindle microtubules through kinetochores. Errors in kinetochore-microtubule (k-MT) attachment that could cause chromosome mis-segregation are frequent and are corrected by the dynamic turnover of k-MT attachments. Thus, regulating the rate of spindle microtubule attachment and detachment to kinetochores is crucial for mitotic fidelity and is frequently disrupted in cancer cells displaying chromosomal instability. A model based on homeostatic principles involving receptors, a core control network, effectors and feedback control may explain the precise regulation of k-MT attachment stability during mitotic progression to ensure error-free mitosis.
    Nature Reviews Molecular Cell Biology 12/2014; 16(1). DOI:10.1038/nrm3916 · 37.16 Impact Factor