Article

miRNAs: whys and wherefores of miRNA-mediated regulation.

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
Current Biology (Impact Factor: 9.92). 07/2005; 15(12):R458-60. DOI: 10.1016/j.cub.2005.06.015
Source: PubMed

ABSTRACT MiRNAs are assumed to be important in animal development and physiology, but their specific roles in vivo are still poorly understood. New bioinformatic and genetic studies are setting the stage for unraveling the specific biological functions of miRNAs.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug addiction is characterized by uncontrolled drug consumption and high rates of relapse to drug taking during periods of attempted abstinence. Addiction is now largely considered a disorder of experience-dependent neuroplasticity, driven by remodeling of synapses in reward and motivation relevant brain circuits in response to a history of prolonged drug intake. Alterations in gene expression play a central role in addiction-relevant neuroplasticity, but the mechanisms by which additive drugs remodel brain motivation circuits remains unclear. MicroRNAs (miRNAs) are a class of noncoding RNA that can regulate the expression of large numbers of protein-coding mRNA transcripts by binding to the 3' untranslated region (3' UTR) of target transcripts and blocking their translation into the encoded protein or triggering their destabilization and degradation. Emerging evidence has implicated miRNAs in regulating addiction-relevant neuroplasticity in the brain, and in controlling the motivational properties of cocaine and other drugs of abuse. Here, the role for miRNAs in regulating basic aspects of neuronal function is reviewed. The involvement of miRNAs in controlling the motivational properties of addictive drugs is also summarized. Finally, mechanisms by which miRNAs exert their actions on drug intake, when known, are considered.
    Dialogues in clinical neuroscience 09/2014; 16(3):335-44.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmaniasis represents endemic infections that occur predominantly, in tropical and sub-tropical regions. The current situation for the chemotherapy of leishmaniasis is more promising than it has been for several decades with both new drugs and new formulations of old drugs either recently approved or in clinical trials. Investigations focused on parasite biology and identification of novel drug targets have become of great importance. The identification and characterization of microRNA (miRNAs) in the parasite and their possible biological action hopefully facilitate the discovery of potential antiparasitic drug targets against leishmaniasis. microRNA and other small RNA transcripts are derived from distinct loci in the genome and play critical roles in RNA–mediated gene silencing mechanisms in the organisms. miRNAs regulate mRNA stability through perfect and imperfect match to the targets. The biological activities of miRNAs have been related to many biological events, from resistant to microbe infections to cellular differentiation. miRNA like-elements have been identified in Leishmania major. Identification of miRNA-like elements in L. major provides a foundation for subsequent functional studies. Computational strategies provide an efficient manner to predict miRNA genes and their targets. Twenty-five potential miRNA-like elements in different chromosomes (chr.) like chr. 7th, 8th, 17th, 18th, 21st, 23rd, 25th, 26th, 29th, 31st, 32nd, 33rd, 34th and 35th of L. major have been identified. It is known from this study that the target genes of miRNA-like elements involve multidrug resistant protein such as ABC transporter, ribosomal protein, RNA binding proteins, hydrolase and exonuclease.
    MicroRNA. 12/2013; 2(3):225-230.

Full-text (3 Sources)

Download
42 Downloads
Available from
Jun 4, 2014