Hypothalamic rAAV-mediated GDNF gene delivery ameliorates age-related obesity.

Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Gainesville, FL 32608-1197, USA.
Neurobiology of Aging (Impact Factor: 4.85). 04/2006; 27(3):459-70. DOI: 10.1016/j.neurobiolaging.2005.03.018
Source: PubMed

ABSTRACT Intraventricular delivery of glial cell line-derived neurotrophic factor (GDNF) results in weight loss. We hypothesized that this effect of GDNF was likely mediated via its effects on dopaminergic neurons in the hypothalamus. Continuous rAAV-mediated GDNF expression in the hypothalamus of young and senescent rats resulted in weight loss compared to controls. However, GDNF-induced weight loss was unrelated to alterations in hypothalamic dopamine levels. The weight loss was associated with decreased food intake and increased energy expenditure, but these effects were not mediated by changes in hypothalamic NPY or POMC expression. Moreover, uncoupling protein 1 levels were unchanged in brown adipose tissue (BAT). The reduction in weight and adiposity were as great or greater in the aged rats even though aged rats are generally resistant to weight loss therapies. In summary, central GDNF gene delivery reduces weight and adiposity in young and aged rats through decreased food intake and increased energy expenditure. Our observations in aged rats suggest that GDNF may be especially effective in reducing obesity in aged obese rats.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current gene therapy approaches for Parkinson's disease (PD) deliver neurotrophic factors like glial cell line-derived neurotrophic factor (GDNF) or neurturin via neuronal transgene expression. Since these potent signaling-inducing neurotrophic factors can be distributed through long-distance neuronal projections to unaffected brain sites, this mode of delivery may eventually cause side effects. To explore a localized and thus potentially safer alternative for gene therapy of PD, we expressed GDNF exclusively in astrocytes and evaluated the efficacy of this approach in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rat 6-hydroxy-dopamine (6-OHDA) models of PD. In terms of protection of dopaminergic cell bodies and projections, dopamine (DA) synthesis and behaviour, astrocyte-derived GDNF demonstrated the same efficacy as neuron-derived GDNF. In terms of safety, unilateral striatal GDNF expression in astrocytes did not result in delivery of bio-active GDNF to the contralateral hemispheres (potential off-target sites) as happened when GDNF was expressed in neurons. Thus, astrocytic GDNF expression represents a localized but efficient alternative to current gene therapeutic strategies for the treatment of PD, especially if viral vectors with enhanced tissue penetration are considered. Astrocytic neurotrophic factor expression may open new venues for neurotrophic factor-based gene therapy targeting severe diseases of the brain.
    Molecular Therapy 11/2011; 20(3):534-43. DOI:10.1038/mt.2011.249 · 6.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the central nervous system, cholinergic and dopaminergic (DA) neurons are among the cells most susceptible to the deleterious effects of age. Thus, the basal forebrain cholinergic system is known to undergo moderate neurodegenerative changes during normal aging as well as severe atrophy in Alzheimer's disease (AD). Parkinson's disease (PD), a degeneration of nigro-striatal DA neurons is the most conspicuous reflection of the vulnerability of DA neurons to age. Overall, there is growing evidence that a progressive decline in cognitive function and central DA activity represents basic features of normal aging both in humans and laboratory rodents. Spontaneous or environmental neurotoxin-mediated exacerbation of these processes contributes to the symptoms of AD and PD, respectively. In this context, neurotrophic factors that can prevent or delay the decline in cognitive function and central DA activity are of clinical interest. Among them, Insulin-like Growth Factor I and Glial cell line-Derived Neurotrophic Factor are emerging as powerful neuroprotective molecules. This article discusses the experimental evidence supporting the neuroprotective relevance of these and related factors in the aging brain. The availability of induced pluripotent stem cells offers a new promise for the treatment of pathologies associated with the loss of specific cell types as for instance, nigral DA neurons (in PD) or basal forebrain cholinergic neurons (BFCN) in the early stages of AD. Recent studies documenting the use of cell reprogramming for the generation of multipotent neuronal precursors as well as functional BFCN and DA neurons are reviewed.
    Current Gene Therapy 01/2014; 14(1). DOI:10.2174/1566523214666140120121733 · 4.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. It's role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice, that over express GDNF under the control of the glial fibrillary acidic protein promoter, and wild-type (WT) littermates were maintained on a HFD or regular rodent diet (RD) for 11 weeks, and weight gain, energy expenditure and insulin sensitivity monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly (P<0.001) higher energy expenditure than WT mice and increased expression in skeletal muscle and brown adipose tissue of peroxisome proliferator activated receptor-α and β1- and β3-adrenergic receptor genes which are associated with increased lipolysis and enhanced lipid β-oxidation. In vitro, GDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.
    AJP Gastrointestinal and Liver Physiology 01/2014; 306(6). DOI:10.1152/ajpgi.00364.2013 · 3.74 Impact Factor