Article

Characterization of liver function in transdifferentiated hepatocytes

Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom.
Journal of Cellular Physiology (Impact Factor: 3.87). 01/2006; 206(1):147-59. DOI: 10.1002/jcp.20438
Source: PubMed

ABSTRACT We previously demonstrated that dexamethasone (Dex) induces the transdifferentiation (or conversion) of the pancreatic progenitor cell line AR42J-B13 (B13) to hepatocytes based on the expression of liver proteins. We have extended our original observations to determine: (1) the effects of Dex on pancreatic gene expression; (2) the time course of expression of liver enriched transcription factors during conversion from pancreatic to hepatic phenotype; (3) the functional potential of transdifferentiated hepatocytes; (4) the proliferative capacity of transdifferentiated hepatocytes; and (5) whether ectopic expression of transcription factors can induce the hepatic phenotype in pancreatic B13 cells. The results were as follows. The B13 cell markers amylase, synaptophysin, and neurofilament were lost in transdifferentiated hepatocytes compared to control cells and the liver enriched transcription factors C/EBPbeta and C/EBPalpha were induced first, followed by HNF4alpha and then RXRalpha. Using RT-PCR analysis and immunolocalisation studies, we detected hepatic markers (e.g., apolipoprotein B) in Dex-treated cells. In transdifferentiated hepatocytes albumin was secreted, insulin stimulated lipid deposition and ciprofibrate enhanced the expression of catalase. Proliferation of transdifferentiated hepatocytes is promoted in the presence of HGF and NEAA as indicated by the co-expression of the cell cycle markers cyclin D and phosphohistone H3 with liver proteins. Lastly, ectopic expression of C/EBPalpha or C/EBPbeta in AR42J-B13 cells was sufficient to induce transdifferentiation, based on nuclear localization of HNF4alpha and induction of UDP-glucuronosyltransferase expression. These results indicate that the B13 progenitor cell model is suitable for studying liver function and for understanding the molecular and cellular events that occur during transdifferentiation.

0 Bookmarks
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNAs) are short noncoding RNAs that negatively regulate gene expression. Although recent evidences have been indicated that their aberrant expression may play an important role in cancer stem cells, the mechanism of their deregulation in neoplastic transformation of liver cancer stem cells (LCSCs) has not been explored. In our study, the HCC model was established in F344 rats by DEN induction. The EpCAM(+) cells were sorted out from unfractionated fetal liver cells and liver cancer cells using the FACS analysis and miRNA expression profiles of two groups were screened through microarray platform. Gain-of-function studies were performed in vitro and in vivo to determine the role of miR-92b on proliferation and differentiation of the hepatic progenitors. In addition, luciferase reporter system and gene function analysis were used to predict miR-92b target. we found that miR-92b was highly downregulated in EpCAM(+) fetal liver cells in expression profiling studies. RT-PCR analysis demonstrated reverse correlation between miR-92b expression and differentiation degree in human HCC samples. Overexpression of miR-92b in EpCAM(+) fetal liver cells significantly increased proliferation and inhibited differentiation as well as in vitro and in vivo studies. Moreover, we verified that C/EBPß is a direct target of miR-92b and contributes to its effects on proliferation and differentiation. We conclude that aberrant expression of miR-92b can result in proliferation increase and differentiation arrest of hepatic progenitors by targeting C/EBPß.
    PLoS ONE 08/2013; 8(8):e68004. DOI:10.1371/journal.pone.0068004 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metaplasia is the irreversible conversion of one differentiated cell or tissue type into another. Metaplasia usually occurs in tissues that undergo regeneration, and may, in a pathological context, predispose to an increased risk of disease. Studying the conditions leading to the development of metaplasia is therefore of significant clinical interest. In contrast, transdifferentiation (or cellular reprogramming) is a subset of metaplasia that describes the permanent conversion of one differentiated cell type into another, and generally occurs between cells that arise from neighbouring regions of the same germ layer. Transdifferentiation, although rare, has been shown to occur in Nature. New insights into the signalling pathways involved in normal tissue development may be obtained by investigating the cellular and molecular mechanisms in metaplasia and transdifferentiation, and additional identification of key molecular regulators in transdifferentiation and metaplasia could provide new targets for therapeutic treatment of diseases such as cancer, as well as generating cells for transplantation into patients with degenerative disorders. In the present review, we focus on the transdifferentiation of pancreatic cells into hepatocyte-like cells, the development of Barrett's metaplasia in the oesophagus, and the cellular and molecular mechanisms underlying both processes.
    Biochemical Society Transactions 06/2014; 42(3):609-16. DOI:10.1042/BST20140058 · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neural stem cells discovered in the adult ciliary epithelium (CE) in higher vertebrates have emerged as an accessible source of retinal progenitors; these cells can self-renew and possess retinal potential. However, recent studies have cast doubt as to whether these cells could generate functional neurons and differentiate along the retinal lineage. Here, we have systematically examined the pan neural and retinal potential of CE stem cells. Molecular and cellular analysis was carried out to examine the plasticity of CE stem cells, obtained from mice expressing green fluorescent protein (GFP) under the influence of the promoter of the rod photoreceptor-specific gene, Nrl, using the neurospheres assay. Differentiation was induced by specific culture conditions and evaluated by both transcripts and protein levels of lineage-specific regulators and markers. Temporal pattern of their levels were examined to determine the expression of genes and proteins underlying the regulatory hierarchy of cells specific differentiation in vitro. Functional attributes of differentiation were examined by the presence of current profiles and pharmacological mobilization of intracellular calcium using whole cell recordings and Fura-based calcium imaging, respectively. We demonstrate that stem cells in adult CE not only have the capacity to generate functional neurons, acquiring the expression of sodium and potassium channels, but also respond to specific cues in culture and preferentially differentiate along the lineages of retinal ganglion cells (RGCs) and rod photoreceptors, the early and late born retinal neurons, respectively. The retinal differentiation of CE stem cells was characterized by the temporal acquisition of the expression of the regulators of RGCs and rod photoreceptors, followed by the display of cell type-specific mature markers and mobilization of intracellular calcium. Our study demonstrates the bonafide retinal potential of adult CE stem cells and suggests that their plasticity could be harnessed for clinical purposes once barriers associated with any lineage conversion, i.e., low efficiency and fidelity is overcome through the identification of conducive culture conditions.
    BMC Neuroscience 10/2013; 14(1):130. DOI:10.1186/1471-2202-14-130 · 2.85 Impact Factor

Full-text

Download
0 Downloads
Available from
Jan 27, 2015