Article

Miscoding events during DNA synthesis past the nitration-damaged base 8-nitroguanine

Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA.
Biochemistry (Impact Factor: 3.19). 07/2005; 44(25):9238-45. DOI: 10.1021/bi050276p
Source: PubMed

ABSTRACT 8-Nitro-2'-deoxyguanosine (8-NO(2)-dG) DNA adducts are induced by the reactive nitrogen species and may be associated with the development of cancer in inflammatory tissues. To explore the miscoding potential of 8-NO(2)-dG adduct, an oligodeoxynucleotide containing a single 8-NO(2)-dG adduct was prepared by photochemical synthesis and used as a template in primer extension reactions catalyzed by mammalian DNA polymerases (pol). Primer extension reactions catalyzed by pol alpha or beta were strongly retarded at the 8-NO(2)-dG lesion; a fraction of primers was extended past the lesion by incorporating preferentially dCMP, the correct base, opposite the lesion, accompanied by lesser amounts of dAMP and dGMP incorporation. In contrast, primer extension reactions catalyzed by pol eta or a truncated form of pol kappa (pol kappaDeltaC) readily extended past the 8-NO(2)-dG lesion. Pol eta and kappaDeltaC showed more broad miscoding spectra; direct incorporations of dCMP and dAMP were observed, along with lesser amounts of dGMP and dTMP incorporations and deletions. The miscoding frequencies induced by pol eta and kappaDeltaC were at least 8 times higher than that of pol alpha or beta. Miscoding frequency and specificity of 8-NO(2)-dG varied depending on the DNA polymerases used. These observations were supported by steady-state kinetic studies. 8-NO(2)-dG adduct may play an important role in initiating inflammation driven carcinogenesis.

0 Followers
 · 
79 Views
  • Source
    • "Cells deficient in Rev1 and Rev3, subunits of DNA polymerase í µí¼, were hypersensitive to nitrative stress, and translesion DNA synthesis past apurinic sites mediated by this polymerase might contribute to extensive point mutations [55]. It has been reported that adenine is preferentially incorporated opposite 8-nitroguanine during DNA synthesis catalyzed by polymerase í µí¼‚ and í µí¼…ΔC in a cell-free system, suggesting that G:C to T:A transversions can occur [56]. In the ONOO − -treated supF shuttle vector, which was replicated in host Escherichia coli cells, the majority of mutations occurred at G:C base pairs, predominantly involving G:C to T:A transversions [57]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells and result in oxidative and nitrative DNA damage, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in the initiation and/or promotion of inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1), including parasites (Schistosoma haematobium (SH) and Opisthorchis viverrini (OV)), viruses (hepatitis C virus (HCV), human papillomavirus (HPV), and Epstein-Barr virus (EBV)), and bacterium Helicobacter pylori (HP). SH, OV, HCV, HPV, EBV, and HP are important risk factors for bladder cancer, cholangiocarcinoma, hepatocellular carcinoma, cervical cancer, nasopharyngeal carcinoma, and gastric cancer, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS) expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that oxidative and nitrative DNA damage in stem cells may play a key role in inflammation-related carcinogenesis.
    Oxidative Medicine and Cellular Longevity 12/2013; 2013:387014. DOI:10.1155/2013/387014 · 3.36 Impact Factor
  • Source
    • "Recently, 8-nitroguanosine has been reported to be a highly redox-active molecule (Sawa et al., 2003; Zaki et al., 2005). More importantly, experimental evidence has suggested that 8-nitroguanine is a mutagenic DNA lesion, which preferentially leads to G™T transversions (Yermilov et al., 1995; Suzuki et al., 2005), in addition to 8-oxodG (Shibutani et al., 1991; Bruner et al., 2000). Indeed, G™T transversions have been observed in vivo in the ras gene (Bos, 1988) and the p53 tumor suppressor gene in lung and liver cancer (Takahashi et al., 1989; Hsu et al., 1991). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection and chronic inflammation are proposed to contribute to carcinogenesis through inflammation-related mechanisms. Infection with hepatitis C virus, Helicobacter pylori and the liver fluke, Opisthorchis viverrini (OV), are important risk factors for hepatocellular carcinoma (HCC), gastric cancer and cholangiocarcinoma, respectively. Inflammatory bowel diseases (IBDs) and oral diseases, such as oral lichen planus (OLP) and leukoplakia, are associated with colon carcinogenesis and oral squamous cell carcinoma (OSCC), respectively. We performed a double immunofluorescence labeling study and found that nitrative and oxidative DNA lesion products, 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), were formed and inducible nitric oxide synthase (iNOS) was expressed in epithelial cells and inflammatory cells at the site of carcinogenesis in humans and animal models. Antibacterial, antiviral and antiparasitic drugs dramatically diminished the formation of these DNA lesion markers and iNOS expression. These results suggest that oxidative and nitrative DNA damage occurs at the sites of carcinogenesis, regardless of etiology. Therefore, it is considered that excessive amounts of reactive nitrogen species produced via iNOS during chronic inflammation may play a key role in carcinogenesis by causing DNA damage. On the basis of our results, we propose that 8-nitroguanine is a promising biomarker to evaluate the potential risk of inflammation-mediated carcinogenesis.
    Biological Chemistry 05/2006; 387(4):365-72. DOI:10.1515/BC.2006.049 · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review is devoted to chemical transformations of nucleic acids and their components under the action of nitrogen oxide metabolites. The deamination reaction of bases is discussed in the context of possible competing transformations of its intermediates (nitrosamines, diazonium cations, diazotates, triazenes, and diazoanhydrides) and mechanisms of crosslink formation with proteins and nucleic acids. The oxidation and nitration of bases by NO2 is considered together with the possibility of radical transfer to domains from the base stacks in DNA. Reduction of redox potentials of bases as a result of stacking interactions explains the possibility of their reactions within nucleic acids with the oxidants whose redox potential is insufficient for the effective reactions with mononucleotides. Modifications of nucleic acids with peroxynitrite derivatives are discussed in the context of the effect of the DNA primary structure and the modification products formed on the reactivity of single bases. The possibility of reduction of nitro groups within modified bases to amino derivatives and their subsequent diazotation is considered. The substitution of oxoguanine for nitroguanine residues may result; the reductive diazotation can lead to undamaged guanine. The intermediate modified bases, e.g., 8-aminoguanine and 8-diazoguanine, were shown to participate in noncanonical base pairing, including the formation of more stable bonds with two bases, which is characteristic of the DNA Z-form. A higher sensitivity of RNA in comparison with DNA to NO-dependent modifications (NODMs) is predicted on the basis of the contribution of medium microheterogeneity and the known mechanisms of nitrosylation and nitration. The possible biological consequences of nucleic acids NODMs are briefly considered. It is shown that the NODMs under the action of nitrogen oxide metabolites generated by macrophages and similar cells in inflammations or infections should lead to a sharp increase in the number of mutations in the case of RNA-containing viruses. As a result, the defense mechanisms of the host organism may contribute to the appearance of new, including more dangerous, variants of infecting viruses.
    Bioorganicheskaia khimiia 03/2007; 33(2):195-228. DOI:10.1134/S106816200702001X
Show more