Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and Caveolin-1

Division of Hematology-Oncology, Department of Internal Medicine, The University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
Molecular Cancer (Impact Factor: 4.26). 02/2005; 4(1):21. DOI: 10.1186/1476-4598-4-21
Source: PubMed

ABSTRACT In the current study we investigated the role of caveolin-1 (cav-1) in pancreatic adenocarcinoma (PC) cell migration and invasion; initial steps in metastasis. Cav-1 is the major structural protein in caveolae; small Omega-shaped invaginations within the plasma membrane. Caveolae are involved in signal transduction, wherein cav-1 acts as a scaffolding protein to organize multiple molecular complexes regulating a variety of cellular events. Recent evidence suggests a role for cav-1 in promoting cancer cell migration, invasion and metastasis; however, the molecular mechanisms have not been described. The small monomeric GTPases are among several molecules which associate with cav-1. Classically, the Rho GTPases control actin cytoskeletal reorganization during cell migration and invasion. RhoC GTPase is overexpressed in aggressive cancers that metastasize and is the predominant GTPase in PC. Like several GTPases, RhoC contains a putative cav-1 binding motif.
Analysis of 10 PC cell lines revealed high levels of cav-1 expression in lines derived from primary tumors and low expression in those derived from metastases. Comparison of the BxPC-3 (derived from a primary tumor) and HPAF-II (derived from a metastasis) demonstrates a reciprocal relationship between cav-1 expression and p42/p44 Erk activation with PC cell migration, invasion, RhoC GTPase and p38 MAPK activation. Furthermore, inhibition of RhoC or p38 activity in HPAF-II cells leads to partial restoration of cav-1 expression.
Cav-1 expression inhibits RhoC GTPase activation and subsequent activation of the p38 MAPK pathway in primary PC cells thus restricting migration and invasion. In contrast, loss of cav-1 expression leads to RhoC-mediated migration and invasion in metastatic PC cells.

18 Reads
  • Source
    • "We previously demonstrated that beta-2 overexpression in weakly aggressive LNCaP cells conferred morphological changes which resulted in enhanced metastatic behavior in vitro and significantly reduced tumor volume in vivo [62] that could imply a separation between tumor formation and metastatic behavior. These results are similar to observations of RhoC GTPase in prostate, breast, and pancreatic cancer [76], [84], [85]. In the current study, we elucidated a link between beta-2 expression and PCa cell neurotropic behavior. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.
    PLoS ONE 06/2014; 9(6):e98408. DOI:10.1371/journal.pone.0098408 · 3.23 Impact Factor
  • Source
    • "Cav-1 has been found to exist widely in a variety of tissue cells including adipocyte, endothelia and muscle cells[3]. Caveolae is enriched in signal molecules such as Src tyrosine kinases[4], small GTPase[5] and G protein[6]. Generally, Cav-1 functions as scaffolding protein to concentrate various ligands within caveolae and interact with them and in turn the relevant pathways were inhibited. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolin-1 (Cav-1) has been recently identified to be over-expressed in hepatocellular carcinoma (HCC) and promote HCC cell motility and invasion ability via inducing epithelial-mesenchymal transition (EMT). However, the mechanism of aberrant overexpression of Cav-1 remains vague. Here, we observed that Cav-1 expression was positively associated with GLI1 expression in HCC tissues. Forced expression of GLI1 up-regulated Cav-1 in Huh7 cells, while knockdown of GLI1 decreased expression of Cav-1 in SNU449 cells. Additionally, silencing Cav-1 abolished GLI1-induced EMT of Huh7 cells. The correlation between GLI1 and Cav-1 was confirmed in tumor specimens from HCC patients and Cav-1 was found to be associated with poor prognosis after hepatic resection. The relationship between protein expression of GLI1 and Cav-1 was also established in HCC xenografts of nude mice. These results suggest that GLI1 may be attributed to Cav-1 up-regulation which plays an important role in GLI1-driven EMT phenotype in HCC.
    PLoS ONE 01/2014; 9(1):e84551. DOI:10.1371/journal.pone.0084551 · 3.23 Impact Factor
  • Source
    • "Hence we did not pursue this investigation further. Nevertheless, the presence of caveolin-1 may indicate tumor cells with impaired capacity to migrate as previously suggested for human pancreatic tumor cells [41], or else its partial co-localization with RhoC and integrin a5β1 may be an indicator of cells with increased capacities for migration/invasion as suggested for melanoma and mammary epithelial tumor cells [38]. In a prostate cancer bone metastasis model, Collagen I attachment mediated by α2β1 integrin initiates motility programs through RhoC [42]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pancreatic ductal adenocarcinoma (PDAC) is characterized by early systemic dissemination. Although RhoC has been implicated in cancer cell migration, the relevant underlying molecular mechanisms remain unknown. RhoC has been implicated in the enhancement of cancer cell migration and invasion, with actions which are distinct from RhoA (84% homology), and are possibly attributed to the divergent C-terminus domain. Here, we confirm that RhoC significantly enhances the migratory and invasive properties of pancreatic carcinoma cells. In addition, we show that RhoC over-expression decreases cancer cell adhesion and, in turn, accelerates cellular body movement and focal adhesion turnover, especially, on fibronectin-coated surfaces. Whilst RhoC over-expression did not alter integrin expression patterns, we show that it enhanced integrin α5β1 internalization and re-cycling (trafficking), an effect that was dependent specifically on the C-terminus (180-193 amino acids) of RhoC protein. We also report that RhoC and integrin α5β1 co-localize within the peri-nuclear region of pancreatic tumor cells, and by masking the CAAX motif at the C-terminal of RhoC protein, we were able to abolish this interaction in vitro and in vivo. Co-localization of integrin α5β1 and RhoC was demonstrable in invading cancer cells in 3D-organotypic cultures, and further mimicked in vivo analyses of, spontaneous human, (two distinct sources: operated patients and rapid autopsy programme) and transgenic murine (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre), pancreatic cancers. In both cases, co-localization of integrin α5β1 and RhoC correlated with poor differentiation status and metastatic potential. We propose that RhoC facilitates tumor cell invasion and promotes subsequent metastasis, in part, by enhancing integrin α5β1 trafficking. Thus, RhoC may serve as a biomarker and a therapeutic target.
    PLoS ONE 12/2013; 8(12):e81575. DOI:10.1371/journal.pone.0081575 · 3.23 Impact Factor
Show more

Preview (2 Sources)

18 Reads
Available from