The Na/K-ATPase-mediated signal transduction as a target for new drug development.

Department of Pharmacology and Medicine, Medical College of Ohio, Toledo, OH 43614, USA.
Frontiers in Bioscience (Impact Factor: 4.25). 02/2005; 10:3100-9. DOI: 10.2741/1766
Source: PubMed

ABSTRACT The Na/K-ATPase, or Na+ pump, is a member of the P-type ATPase superfamily. In addition to pumping ions, the Na/K-ATPase is a receptor that not only regulates the function of protein kinases, but also acts as a scaffold, capable of tethering different proteins into a signalplex. The signaling Na/K-ATPase resides in caveolae and forms a "binary receptor" with the tyrosine kinase Src. Endogenous cardiotonic steroids and digitalis drugs such as ouabain act as agonists and provoke this binary receptor, resulting in tyrosine phosphorylation of the proteins that are either associated with, or in close proximity to, the signaling Na/K-ATPase. Subsequently, this initiates protein kinase cascades including ERKs and PKC isozymes. It also increases mitochondrial production of reactive oxygen species (ROS) and regulates intracellular calcium concentration. Like other receptors, activation of the Na/K-ATPase/Src by ouabain induces the endocytosis of the plasma membrane Na/K-ATPase. Significantly, this newly appreciated signaling function of the Na/K-ATPase appears to play an important role in the pathogenesis of many cardiovascular diseases, therefore serving as an important target for development of novel therapeutic agents.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In silico analysis predicts interaction between the Na/K ATPase (NKA) and Bcl-2 protein canonical motifs BH3 and BH1. Such interaction is consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic in human lens epithelial cells (HLECs) (Lauf et al. Cell Physiol. Biochem. 31:257-276; 2013). This report establishes proof of concept: Co-immuno-precipitation and immuno-colocalization showed unequivocal and direct interaction between NKA and Bcl-2 proteins. Specifically, NKA-antibodies co-immunoprecipitated BclXL and BAK in two different HLECs and A549 lung cancer cell lines, but anti-Bcl-2 antibodies failed to pull down NKA. The molecular mass of the BAK1 proteins pulled down by antibodies against NKA and BclXL appeared to be some 4 kDa larger than found in the input monomer. This observation may be explained by in silico analysis whereby these higher molecular mass BAK1 proteins reflect alternative splicing variants, encoding 42 amino acids (aa) larger proteins than the known 211 aa long canonical BAK1 protein, which may specifically interact with the NKA and BclXL proteins. These novel findings validate our hypothesis for a special sensor role of NKA in the Bcl-2 protein governance of cellular survival and apoptosis.
    AJP Cell Physiology 10/2014; · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease), ATP7B (Wilson disease), the Na(+)/K(+)-ATPases ATP1A2 (familial hemiplegic migraine) and ATP1A3 (rapid-onset dystonia parkinsonism). Finally, we review the recent literature of ATP13A2 and discuss ATP13A2's putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet to the other. A flippase might control local lipid dynamics during vesicle formation and membrane fusion events.
    Frontiers in Molecular Neuroscience 01/2014; 7:48.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been postulated for some time that endogenous digitalis-like substances, also called cardiotonic steroids (CTS), exist, and that these substances are involved in sodium handling. Within the past 20 years, these substances have been unequivocally identified and measurements of circulating and tissue concentrations have been made. More recently, it has been identified that CTS also mediate signal transduction through the Na/K-ATPase, and consequently been implicated in profibrotic pathways. This review will discuss the mechanism of CTS in renal sodium handling and a potential "trade-off" effect from their role in inducing tissue fibrosis.
    Frontiers in Endocrinology 07/2014; 5:97.


Available from