Anticipation in familial pancreatic cancer.

Division of Surgery and Oncology, University of Liverpool L69 3GA, UK.
Gut (Impact Factor: 13.32). 03/2006; 55(2):252-8. DOI: 10.1136/gut.2005.065045
Source: PubMed

ABSTRACT Previous studies of anticipation in familial pancreatic cancer have been small and subject to ascertainment bias. Our aim was to determine evidence for anticipation in a large number of European families.
A total of 1223 individuals at risk from 106 families (264 affected individuals) were investigated. Generation G3 was defined as the latest generation that included any individual aged over 39 years; preceding generations were then defined as G2 and G1.
With 80 affected child-parent pairs, the children died a median (interquartile range) of 10 (7, 14) years earlier. The median (interquartile range) age of death from pancreatic cancer was 70 (59, 77), 64 (57, 69), and 49 (44, 56) years for G1, G2, and G3, respectively. These indications of anticipation could be the result of bias. Truncation of Kaplan-Meier analysis to a 60 year period to correct for follow up time bias and a matched test statistic indicated significant anticipation (p=0.002 and p<0.001). To minimise bias further, an iterative analysis to predict cancer numbers was developed. No single risk category could be applied that accurately predicted cancer cases in every generation. Using three risk categories (low with no pancreatic cancer in earlier generations, high with a single earlier generation, and very high where two preceding generations were affected), incidence was estimated without significant error. Anticipation was independent of smoking.
This study provides the first strong evidence for anticipation in familial pancreatic cancer and must be considered in genetic counselling and the commencement of secondary screening for pancreatic cancer.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is the fourth most common cause of cancer-related deaths in the United States, with over 38000 deaths in 2013. The opportunity to detect pancreatic cancer while it is still curable is dependent on our ability to identify and screen high-risk populations before their symptoms arise. Risk factors for developing pancreatic cancer include multiple genetic syndromes as well as modifiable risk factors. Genetic conditions include hereditary breast and ovarian cancer syndrome, Lynch Syndrome, familial adenomatous polyposis, Peutz-Jeghers Syndrome, familial atypical multiple mole melanoma syndrome, hereditary pancreatitis, cystic fibrosis, and ataxia-telangiectasia; having a genetic predisposition can raise the risk of developing pancreatic cancer up to 132-fold over the general population. Modifiable risk factors, which include tobacco exposure, alcohol use, chronic pancreatitis, diet, obesity, diabetes mellitus, as well as certain abdominal surgeries and infections, have also been shown to increase the risk of pancreatic cancer development. Several large-volume centers have initiated such screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and modifiable risk factors implicated in pancreatic cancer, as well as a review of screening strategies and their diagnostic yields.
    World journal of gastroenterology : WJG. 08/2014; 20(32):11182-11198.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is a highly lethal disease with a genetic susceptibility and familial aggregation found in 3%-16% of patients. Early diagnosis remains the only hope for curative treatment and improvement of prognosis. This can be reached by the implementation of an intensive screening program, actually recommended for individuals at high-risk for pancreatic cancer development. The aim of this strategy is to identify pre-malignant precursors or asymptomatic pancreatic cancer lesions, curable by surgery. Endoscopic ultrasound (EUS) with or without fine needle aspiration (FNA) seems to be the most promising technique for early detection of pancreatic cancer. It has been described as a highly sensitive and accurate tool, especially for small and cystic lesions. Pancreatic intraepithelial neoplasia, a precursor lesion which is highly represented in high-risk individuals, seems to have characteristics chronic pancreatitis-like changes well detected by EUS. Many screening protocols have demonstrated high diagnostic yields for pancreatic pre-malignant lesions, allowing prophylactic pancreatectomies. However, it shows a high interobserver variety even among experienced endosonographers and a low sensitivity in case of chronic pancreatitis. Some new techniques such as contrast-enhanced harmonic EUS, computer-aided diagnostic techniques, confocal laser endomicroscopy miniprobe and the detection of DNA abnormalities or protein markers by FNA, promise improvement of the diagnostic yield of EUS. As the resolution of imaging improves and as our knowledge of precursor lesions grows, we believe that EUS could become the most suitable method to detect curable pancreatic neoplasms in correctly identified asymptomatic at-risk patients.
    World Journal of Gastrointestinal Endoscopy. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic adenocarcinoma (PC) is the most deadly of the common cancers. Owing to its rapid progression and almost certain fatal outcome, identifying individuals at risk and detecting early lesions are crucial to improve outcome. Genetic risk factors are believed to play a major role. Approximately 10% of PC is estimated to have familial inheritance. Several germline mutations have been found to be involved in hereditary forms of PC, including both familial PC (FPC) and PC as one of the manifestations of a hereditary cancer syndrome or other hereditary conditions. Although most of the susceptibility genes for FPC have yet to be identified, next-generation sequencing studies are likely to provide important insights. The risk of PC in FPC is sufficiently high to recommend screening of high-risk individuals; thus, defining such individuals appropriately is the key. Candidate genes have been described and patients considered for screening programs under research protocols should first be tested for presence of germline mutations in the BRCA2, PALB2 and ATM genes. In specific PC populations, including in Italy, hereditary cancer predisposition genes such as CDKN2A also explain a considerable fraction of FPC.
    World Journal of Gastroenterology 08/2014; 20(31):10778-10789. · 2.43 Impact Factor

Full-text (2 Sources)

Available from
Jan 7, 2015