A T-stem slip in human mitochondrial tRNALeu(CUN) governs its charging capacity.

State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences 320 Yue Yang Road, Shanghai 200031, People's Republic of China.
Nucleic Acids Research (Impact Factor: 8.28). 02/2005; 33(11):3606-13. DOI:10.1093/nar/gki677
Source: PubMed

ABSTRACT The human mitochondrial tRNALeu(CUN) [hmtRNALeu(CUN)] corresponds to the most abundant codon for leucine in human mitochondrial protein genes. Here, in vitro studies reveal that the U48C substitution in hmtRNALeu(CUN), which corresponds to the pathological T12311C gene mutation, improved the aminoacylation efficiency of hmtRNALeu(CUN). Enzymatic probing suggested a more flexible secondary structure in the wild-type hmtRNALeu(CUN) transcript compared with the U48C mutant. Structural analysis revealed that the flexibility of hmtRNALeu(CUN) facilitates a T-stem slip resulting in two potential tertiary structures. Several rationally designed tRNALeu(CUN) mutants were generated to examine the structural and functional consequences of the T-stem slip. Examination of these hmtRNALeu(CUN) mutants indicated that the T-stem slip governs tRNA accepting activity. These results suggest a novel, self-regulation mechanism of tRNA structure and function.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Streptococcus pneumoniae causes bacterial pneumonia with high mortality and morbidity. The emergency of multidrug-resistant bacteria threatens the treatment of the disease. Leucyl-tRNA synthetase (LeuRS) plays an essential role in cellular translation and is an attractive drug target for antimicrobial development. Here we report the compound ZCL039, a benzoxaborole-based derivative of AN2690, as a potent anti-pneumococcal agent that inhibits S. pneumoniae LeuRS (SpLeuRS) activity. We show using kinetic, biochemical analyses combined with the crystal structure of ZCL039-AMP in complex with the separated SpLeuRS editing domain, that ZCL039 binds to the LeuRS editing active site which requires the presence of tRNA(Leu), and employs an uncompetitive inhibition mechanism. Further docking models establish that ZCL039 clashes with the eukaryal/archaeal specific insertion I4ae helix within editing domains. These findings demonstrate the potential of benzoxaboroles as effective LeuRS inhibitors for pneumococcus infection therapy, and provide future structure-guided drug design and optimization.
    Scientific Reports 08/2013; 3:2475. · 2.93 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The fidelity of protein biosynthesis requires the aminoacylation of tRNA with its cognate amino acid catalyzed by aminoacyl-tRNA synthetase with high levels of accuracy and efficiency. Crucial bases in tRNA(Leu) to aminoacylation or editing functions of leucyl-tRNA synthetase have been extensively studied mainly by in vitro methods. In the present study, we constructed two Saccharomyces cerevisiae tRNA(Leu) knockout strains carrying deletions of the genes for tRNA(Leu)(GAG) and tRNA(Leu)(UAG). Disrupting the single gene encoding tRNA(Leu)(GAG) had no phenotypic consequence when compared to the wild-type strain. While disrupting the three genes for tRNA(Leu)(UAG) had a lethal effect on the yeast strain, indicating that tRNA(Leu)(UAG) decoding capacity could not be compensated by another tRNA(Leu) isoacceptor. Using the triple tRNA knockout strain and a randomly mutated library of tRNA(Leu)(UAG), a selection to identify critical tRNA(Leu) elements was performed. In this way, mutations inducing in vivo decreases of tRNA levels or aminoacylation or editing ability by leucyl-tRNA synthetase were identified. Overall, the data showed that the triple tRNA knockout strain is a suitable tool for in vivo studies and identification of essential nucleotides of the tRNA.
    Nucleic Acids Research 08/2012; · 8.28 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: aaRSs (aminoacyl-tRNA synthetases) establish the rules of the genetic code by catalysing the formation of aminoacyl-tRNA. The quality control for aminoacylation is achieved by editing activity, which is usually carried out by a discrete editing domain. For LeuRS (leucyl-tRNA synthetase), the CP1 (connective peptide 1) domain is the editing domain responsible for hydrolysing mischarged tRNA. The CP1 domain is universally present in LeuRSs, except MmLeuRS (Mycoplasma mobile LeuRS). The substitute of CP1 in MmLeuRS is a nonapeptide (MmLinker). In the present study, we show that the MmLinker, which is critical for the aminoacylation activity of MmLeuRS, could confer remarkable tRNA-charging activity on the inactive CP1-deleted LeuRS from Escherichia coli (EcLeuRS) and Aquifex aeolicus (AaLeuRS). Furthermore, CP1 from EcLeuRS could functionally compensate for the MmLinker and endow MmLeuRS with post-transfer editing capability. These investigations provide a mechanistic framework for the modular construction of aaRSs and their co-ordination to achieve catalytic efficiency and fidelity. These results also show that the pre-transfer editing function of LeuRS originates from its conserved synthetic domain and shed light on future study of the mechanism.
    Biochemical Journal 02/2012; 443(2):477-84. · 4.65 Impact Factor


Available from