Article

A T-stem slip in human mitochondrial tRNALeu(CUN) governs its charging capacity

State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences 320 Yue Yang Road, Shanghai 200031, People's Republic of China.
Nucleic Acids Research (Impact Factor: 9.11). 02/2005; 33(11):3606-13. DOI: 10.1093/nar/gki677
Source: PubMed

ABSTRACT The human mitochondrial tRNALeu(CUN) [hmtRNALeu(CUN)] corresponds to the most abundant codon for leucine in human mitochondrial protein genes. Here, in vitro studies reveal that the U48C substitution in hmtRNALeu(CUN), which corresponds to the pathological T12311C gene mutation, improved the aminoacylation efficiency of hmtRNALeu(CUN). Enzymatic probing suggested a more flexible secondary structure in the wild-type hmtRNALeu(CUN) transcript compared with the U48C mutant. Structural analysis revealed that the flexibility of hmtRNALeu(CUN) facilitates a T-stem slip resulting in two potential tertiary structures. Several rationally designed tRNALeu(CUN) mutants were generated to examine the structural and functional consequences of the T-stem slip. Examination of these hmtRNALeu(CUN) mutants indicated that the T-stem slip governs tRNA accepting activity. These results suggest a novel, self-regulation mechanism of tRNA structure and function.

Download full-text

Full-text

Available from: Rui Hao, May 06, 2014
0 Followers
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have studied the consequences of two homoplasmic, pathogenic point mutations (T7512C and G7497A) in the tRNA(Ser(UCN)) gene of mitochondrial (mt) DNA using osteosarcoma cybrids. We identified a severe reduction of tRNA(Ser(UCN)) to levels below 10% of controls for both mutations, resulting in a 40% reduction in mitochondrial protein synthesis rate and in a respiratory chain deficiency resembling that in the patients muscle. Aminoacylation was apparently unaffected. On non-denaturating northern blots we detected an altered electrophoretic mobility for G7497A containing tRNA molecules suggesting a structural impact of this mutation, which was confirmed by structural probing. By comparing in vitro transcribed molecules with native RNA in such gels, we also identified tRNA(Ser(UCN)) being present in two isoforms in vivo, probably corresponding to the nascent, unmodified transcripts co-migrating with the in vitro transcripts and a second, faster moving isoform corresponding to the mature tRNA. In cybrids containing either mutations the unmodified isoforms were severely reduced. We hypothesize that both mutations lead to an impairment of post-transcriptional modification processes, ultimately leading to a preponderance of degradation by nucleases over maturation by modifying enzymes, resulting in severely reduced tRNA(Ser(UCN)) steady state levels. We infer that an increased degradation rate, caused by disturbance of tRNA maturation and, in the case of the G7497A mutant, alteration of tRNA structure, is a new pathogenic mechanism of mt tRNA point mutations.
    Nucleic Acids Research 02/2005; 33(17):5647-58. DOI:10.1093/nar/gki876 · 9.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tertiary interactions are crucial in maintaining the tRNA structure and functionality. We used a combined sequence analysis and quantum mechanics approach to calculate accurate energies of the most frequent tRNA tertiary base pairing interactions. Our analysis indicates that six out of the nine classical tertiary interactions are held in place mainly by H-bonds between the bases. In the remaining three cases other effects have to be considered. Tertiary base pairing interaction energies range from -8 to -38 kcal/mol in yeast tRNA(Phe) and are estimated to contribute roughly 25% of the overall tRNA base pairing interaction energy. Six analyzed posttranslational chemical modifications were shown to have minor effect on the geometry of the tertiary interactions. Modifications that introduce a positive charge strongly stabilize the corresponding tertiary interactions. Non-additive effects contribute to the stability of base triplets.
    Nucleic Acids Research 02/2006; 34(3):865-79. DOI:10.1093/nar/gkj491 · 9.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last decade, there has been a progressive accumulation of reports that connect the identification of specific mitochondrial tRNA gene mutations to severe disorders in human. As a result, mitochondrial tRNA genes and their products have emerged as novel and essential molecular markers for wide biochemical and genetic screenings among different human populations. So far, 139 pathogenic and 243 polymorphic mt tRNA mutations have been described and they have become the foreground of numerous case reports. Given the complexity of mitochondrial genetics and biochemistry, the clinical manifestations of mitochondrial disorders are extremely heterogeneous. They range from lesions of single tissues or structures to more severe impairments including myopathies, encephalomyopathies, cardiomyopathies, or complex multisystem syndromes. Moreover, the exact mechanisms by which biochemical cascades can be dramatically affected by mitochondrial tRNA mutations still remain uncharacterized. However and regardless of the vast amount of information that daily emerges, only few efforts have been carried out to systematically record all the mitochondrial tRNA-associated pathogenic mutations or polymorphisms. In this report, we summarize all the clinical phenotypes associated with mitochondrial tRNA pathogenic mutations that have been reported so far. In a next step we describe in detail all the pathogenic and polymorphic mutations that have been recorded so far and we categorize them per tRNA species and per associated disease. Finally, we discuss the impact of the frequency of mitochondrial tRNA mutations in general population surveys and we preview any relevant implications on the essential functional integrity of mitochondrial biochemical pathways.
    RNA biology 01/2007; 4(1):38-66. DOI:10.4161/rna.4.1.4548 · 5.38 Impact Factor
Show more