Article

Genome scale identification of Treponema pallidum antigens.

Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
Infection and Immunity (Impact Factor: 4.16). 08/2005; 73(7):4445-50. DOI: 10.1128/IAI.73.7.4445-4450.2005
Source: PubMed

ABSTRACT Antibody responses for 882 of the 1,039 proteins in the proteome of Treponema pallidum were examined. Sera collected from infected rabbits were used to systematically identify 106 antigenic proteins, including 22 previously identified antigens and 84 novel antigens. Additionally, sera collected from rabbits throughout the course of infection demonstrated a progression in the breadth and intensity of humoral immunoreactivity against a representative panel of T. pallidum antigens.

0 Followers
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Life is full of risk. To deal with this uncertainty, many organisms have evolved bet-hedging strategies that spread risk through phenotypic diversification. These rates of diversification can vary by orders of magnitude in different species. Here we examine how key characteristics of risk and organismal ecology affect the fitness consequences of variation in diversification rate. We find that rapid diversification is strongly favored when the risk faced has a wide spatial extent, with a single disaster affecting a large fraction of the population. This advantage is especially great in small populations subject to frequent disaster. In contrast, when risk is correlated through time, slow diversification is favored because it allows adaptive tracking of disasters that tend to occur in series. Naturally-evolved diversification mechanisms in diverse organisms facing a broad array of environmental risks largely support these results. The theory presented in this paper provides a testable ecological hypothesis to explain the prevalence of slow stochastic switching among microbes and rapid, within-clutch diversification strategies among plants and animals.This article is protected by copyright. All rights reserved.
    Evolution 11/2014; 69(1). DOI:10.1111/evo.12568 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introducción La sífilis es una enfermedad de importancia en la salud pública, el agente causal es el Treponema pallidum (T. pallidum) un microorganismo en forma de espiral y tiene como huésped natural al ser humano. La sífilis es adquirida por contacto directo, usualmente por la vía sexual, causando lesiones primarias (chancro sifilítico), lesiones secundarias (mucocutáneas) y complicaciones serias en la etapa terciaria. La Organización Mundial de la Salud (OMS) ha estimado 12 millones de casos por año, la gran mayoría presentes en países en vías de desarrollo. Es notable esta enfermedad en los países de Europa Oriental a partir de la disolución de la Unión Soviética. La sífilis congénita tiene gran presencia en las naciones en vías de desarrollo, debido a la falta de exámenes prenatales y el tratamiento con antibióticos a las mujeres gestantes. La infección congénita provoca abortos, muerte neonatal, y secuelas en los niños. La sífilis facilita la transmisión del virus de la inmunodeficiencia humana (VIH). Todo esto permite considerar a la sífilis como problema global de salud pública al inicio del nuevo milenio. Hasta el momento no existe una vacuna para prevenir esta enfermedad. Microbiología T. pallidum es una espiroqueta Gram negativa, pertenece a la familia Treponemataceae que agrupa a tres géneros: Leptospira, Borrelia, y Treponema. Otros treponemas patógenos son T. pallidum subespecie pertenue, el agente causal de la frambesia o pian, T. pallidum subespecie endemicum el causante de la sífilis endémica (una forma no-venérea, llamada Bejel en el medio oriente) y T. carateum con el pinto. 1 Los treponemas son morfológicamente idénticos con alto grado de homología en su DNA, relacionados antigénicamente, difieren en su distribución geográfica y especificidad a tejidos del huésped. T. pallidum es de los pocos patógenos del hombre que no puede ser cultivado in vitro, aunque se ha logrado una multiplicación limitada en sistemas de cultivo de tejidos del laboratorio. 2 T. pallidum presenta un tiempo de duplicación inusualmente lento de 30 a 33 horas. Presenta flagelos en uno de sus extremos para su movilidad que mantiene incluso en ambientes viscosos y movilidad en los fluidos biológicos.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, is a highly clonal bacterium showing minimal genetic variability in the genome sequence of individual strains. Nevertheless, genetically characterized syphilis strains can be clearly divided into two groups, Nichols-like strains and SS14-like strains. TPA Nichols and SS14 strains were completely sequenced in 1998 and 2008, respectively. Since publication of their complete genome sequences, a number of sequencing errors in each genome have been reported. Therefore, we have resequenced TPA Nichols and SS14 strains using next-generation sequencing techniques. The genomes of TPA strains Nichols and SS14 were resequenced using the 454 and Illumina sequencing methods that have a combined average coverage higher than 90x. In the TPA strain Nichols genome, 134 errors were identified (25 substitutions and 109 indels), and 102 of them affected protein sequences. In the TPA SS14 genome, a total of 191 errors were identified (85 substitutions and 106 indels) and 136 of them affected protein sequences. A set of new intrastrain heterogenic regions in the TPA SS14 genome were identified including the tprD gene, where both tprD and tprD2 alleles were found. The resequenced genomes of both TPA Nichols and SS14 strains clustered more closely with related strains (i.e. strains belonging to same syphilis treponeme subcluster). At the same time, groups of Nichols-like and SS14-like strains were found to be more distantly related. We identified errors in 11.5% of all annotated genes and, after correction, we found a significant impact on the predicted proteomes of both Nichols and SS14 strains. Corrections of these errors resulted in protein elongations, truncations, fusions and indels in more than 11% of all annotated proteins. Moreover, it became more evident that syphilis is caused by treponemes belonging to two separate genetic subclusters.
    PLoS ONE 09/2013; 8(9):e74319. DOI:10.1371/journal.pone.0074319 · 3.53 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
May 21, 2014