McClung CA, Nestler EJ, Zachariou V. Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J Neurosci 25: 6005-6015

Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.34). 07/2005; 25(25):6005-15. DOI: 10.1523/JNEUROSCI.0062-05.2005
Source: PubMed


Morphine dependence is associated with long-term adaptive changes in the brain that involve gene expression. Different behavioral effects of morphine are mediated by different brain regions, for example, the locus ceruleus (LC), a noradrenergic nucleus, is implicated in physical dependence and withdrawal, whereas the ventral tegmental area (VTA), a dopaminergic nucleus, contributes to rewarding and locomotor responses to the drug. However, the global changes in gene expression that occur in these brain regions after morphine exposure and during withdrawal remain unknown. Using DNA microarray analysis in both mice and rats, we now characterize gene expression changes that occur in these brain regions with chronic morphine and antagonist-precipitated withdrawal. In the LC, numerous genes display common regulation between mouse and rat, including tyrosine hydroxylase, prodynorphin, and galanin. Furthermore, we identify clusters of genes that are regulated similarly by chronic morphine and by withdrawal, as well as clusters that show opposite regulation under these two conditions. Interestingly, most gene expression changes that occur in the VTA in response to chronic morphine are different from those seen in the LC, but the gene expression patterns in the two brain regions are very similar after withdrawal. In addition, we examined two genes (prodynorphin and FK506 binding protein 5) that are strongly regulated by chronic morphine or morphine withdrawal in the LC for their role in regulating withdrawal-associated behaviors. Inhibition of either protein profoundly affects withdrawal responses, demonstrating that the genes identified in this study have important functional roles in mediating opiate-induced behaviors.

Full-text preview

Available from:
  • Source
    • "Many studies have shown that CRF levels are correlated with anxiety in animal models of depression, suggesting a possible link between high level expression of CRF and predisposition to anxiety or morphine withdrawal-induced depression [30]. In addition, previous studies suggested that morphine dependence and withdrawal induce hyperactivity of noradrenergic pathways and an increase in TH modulation in the LC [31]. It has been proposed that clinical anxiety or depression may be the result of alterations in the activity of the LC in central noradrenergic system [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to evaluate whether acupuncture stimulation attenuates withdrawal-induced behaviors in the rats during protracted abstinence following chronic morphine exposure. To do this, male rats were first exposed to morphine gradually from 20 to 100 mg/kg for 5 days, and subsequently naloxone was injected once to extend despair-related withdrawal behaviors for 4 weeks. Acupuncture stimulation was performed once at the SP6 (Sanyinjiao) acupoint on rat's; hind leg for 5 min during protracted abstinence from morphine. The acupuncture stimulation significantly decreased despair-like behavior deficits in the forced swimming test and low sociability in the open-field test as well as increased open-arm exploration in the elevated plus maze test in the last week of 4-week withdrawal period. Also the acupuncture stimulation significantly suppressed the increase in the hypothalamic corticotropin-releasing factor (CRF) expression, the decrease in the tyrosine hydroxylase expression in the locus coeruleus, and the decrease in the hippocampal brain-derived neurotrophic factor mRNA expression, induced by repeated injection of morphine. Taken together, these findings demonstrate that the acupuncture stimulation of SP6 significantly reduces withdrawal-induced behaviors, induced by repeated administration of morphine in rats, possibly through the modulation of hypothalamic CRF and the central noradrenergic system.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:216503. DOI:10.1155/2014/216503 · 1.88 Impact Factor
  • Source
    • "Decreasing Wnt secretion may potentially explain retraction, de-branching, and shrinking of dendrites following chronic morphine administration via depressed Wntinduced dendritogenesis (Hu, 2008; Liao, 2007; Franch-Marro, 2008). Alternatively, increased Wnt secretion may enable up-regulation of growth-related genes (McClung et al., 2005) or facilitate increased dendritogenesis enabling increased connections between afferents and LC dendrites such as under conditions of stress (Xu et al., 2004). Further studies are required to determine functional consequences of WLS trafficking. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Opiate addiction is a devastating health problem, with approximately 2 million people currently addicted to heroin or non-medical prescription opiates in the United States alone. In neurons, adaptations in cell signaling cascades develop following opioid actions at the mu opioid receptor (MOR). A novel putative target for intervention involves interacting proteins that may regulate trafficking of MOR. Morphine has been shown to induce a re-distribution of a MOR-interacting protein Wntless (WLS, a transport molecule necessary for secretion of neurotrophic Wnt proteins), from cytoplasmic to membrane compartments in rat striatal neurons. Given its opiate-sensitivity and its well-characterized molecular and cellular adaptations to morphine exposure, we investigated the anatomical distribution of WLS and MOR in the rat locus coeruleus (LC)-norepinephrine (NE) system. Dual immunofluorescence microscopy was used to test the hypothesis that WLS is localized to noradrenergic neurons of the LC and that WLS and MOR co-exist in common LC somatodendritic processes, providing an anatomical substrate for their putative interactions. We also hypothesized that morphine would influence WLS distribution in the LC. Rats received saline, morphine or the opiate agonist [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), and tissue sections through the LC were processed for immunogold-silver detection of WLS and MOR. Statistical analysis showed a significant re-distribution of WLS to the plasma membrane following morphine treatment in addition to an increase in the proximity of gold-silver labels for MOR and WLS. Following DAMGO treatment, MOR and WLS were predominantly localized within the cytoplasmic compartment when compared to morphine and control. In a separate cohort of rats, brains were obtained from saline-treated or heroin self-administering male rats for pulldown co-immunoprecipitation studies. Results showed an increased association of WLS and MOR following heroin exposure. As the LC-NE system is important for cognition as well as decisions underlying substance abuse, adaptations in WLS trafficking and expression may play a role in modulating MOR function in the LC and contribute to the negative sequelae of opiate exposure on executive function.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 12/2013; 50. DOI:10.1016/j.pnpbp.2013.12.003 · 3.69 Impact Factor
  • Source
    • "Stress and abused drugs share the ability to trigger overlapping patterns of neuronal activation within the central nervous system, resulting in the activation of immediate gene expression. It has been extensively described that addictive substances and chronic stressful stimuli increase the expression of the transcription factor ΔFosB in the main nuclei involved in their positive reinforcing effects [12], [13], [32], [33], and it has been proposed that the persistent effects of ΔFosB on target genes might play an important role in the development of adaptations that characterize addiction [9], [34]. However, little is known about either the expression of ΔFosB in the brain stress system after chronic administration of drugs of abuse or the molecular mechanisms of morphine-evoked ΔFosB accumulation in stress-related areas. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic use of drugs of abuse profoundly alters stress-responsive system. Repeated exposure to morphine leads to accumulation of the transcription factor ΔFosB, particularly in brain areas associated with reward and stress. The persistent effects of ΔFosB on target genes may play an important role in the plasticity induced by drugs of abuse. Recent evidence suggests that stress-related hormones (e.g., glucocorticoids, GC) may induce adaptations in the brain stress system that is likely to involve alteration in gene expression and transcription factors. This study examined the role of GC in regulation of FosB/ΔFosB in both hypothalamic and extrahypothalamic brain stress systems during morphine dependence. For that, expression of FosB/ΔFosB was measured in control (sham-operated) and adrenalectomized (ADX) rats that were made opiate dependent after ten days of morphine treatment. In sham-operated rats, FosB/ΔFosB was induced after chronic morphine administration in all the brain stress areas investigated: nucleus accumbens(shell) (NAc), bed nucleus of the stria terminalis (BNST), central amygdala (CeA), hypothalamic paraventricular nucleus (PVN) and nucleus of the solitary tract noradrenergic cell group (NTS-A(2)). Adrenalectomy attenuated the increased production of FosB/ΔFosB observed after chronic morphine exposure in NAc, CeA, and NTS. Furthermore, ADX decreased expression of FosB/ΔFosB within CRH-positive neurons of the BNST, PVN and CeA. Similar results were obtained in NTS-A(2) TH-positive neurons and NAc pro-dynorphin-positive neurons. These data suggest that neuroadaptation (estimated as accumulation of FosB/ΔFosB) to opiates in brain areas associated with stress is modulated by GC, supporting the evidence of a link between brain stress hormones and addiction.
    PLoS ONE 11/2012; 7(11):e50264. DOI:10.1371/journal.pone.0050264 · 3.23 Impact Factor
Show more