Article

HIV-1-infected blood mononuclear cells form an integrin- and agrin-dependent viral synapse to induce efficient HIV-1 transcytosis across epithelial cell monolayer.

Entrée Muqueuse du VIH et Immunité muqueuse, Departement de Biologie Cellulaire, Institut Cochin, CNRS, INSERM, Université René Descartes, 75014 Paris, France.
Molecular Biology of the Cell (Impact Factor: 4.55). 10/2005; 16(9):4267-79. DOI: 10.1091/mbc.E05-03-0192
Source: PubMed

ABSTRACT The heparan sulfate proteoglycan agrin and adhesion molecules are key players in the formation of neuronal and immune synapses that evolved for efficient communication at the sites of cell-cell contact. Transcytosis of infectious virus across epithelial cells upon contact between HIV-1-infected cells and the mucosal pole of the epithelial cells is one mechanism for HIV-1 entry at mucosal sites. In contrast, transcytosis of cell-free HIV-1 is not efficient. A synapse between HIV-1-infected cells and the mucosal epithelial surface that resembles neuronal and immune synapses is visualized by electron microscopy. We have termed this the "viral synapse." Similarities of the viral synapse also extend to the functional level. HIV-1-infected cell-induced transcytosis depends on RGD-dependent integrins and efficient cell-free virus transcytosis is inducible upon RGD-dependent integrin cross-linking. Agrin appears differentially expressed at the apical epithelial surface and acts as an HIV-1 attachment receptor. Envelope glycoprotein subunit gp41 binds specifically to agrin, reinforcing the interaction of gp41 to its epithelial receptor galactosyl ceramide.

0 Bookmarks
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8+ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.
    AIDS 05/2014; · 6.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vast majority of new HIV infections in male-to-female transmission occurs through semen, where HIV-1 is present in two different forms: as free and as cell-associated virus. In the female lower genital tract, semen mixes with female genital secretions that contain various factors, some of which facilitate or inhibit HIV-1 transmission. Next, HIV-1 crosses the genital epithelia, reaches the regional lymph nodes, and disseminates through the female host. Cervico-vaginal mucosa contains multiple barriers, resulting in a low probability of vaginal transmission. However, in some cases, HIV-1 is able to break these barriers. Although the exact mechanisms of how these barriers function remain unclear, their levels of efficiency against cell-free and cell-associated HIV-1 are different, and both cell-free and cell-associated virions seem to use different strategies to overcome these barriers. Understanding the basic mechanisms of HIV-1 vaginal transmission is required for the development of new antiviral strategies to contain HIV-1 epidemics.
    American Journal Of Reproductive Immunology 04/2014; · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of coinfections between HIV/AIDS and the most prevalent STDs.
    BioMed Research International 01/2014; 2014:20. · 2.71 Impact Factor

Preview

Download
0 Downloads
Available from