Article

Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas.

Pathology Group, International Agency for Research on Cancer (HO), F-69372, Lyon, France.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 4.37). 06/2005; 64(6):479-89.
Source: PubMed

ABSTRACT Published data on prognostic and predictive factors in patients with gliomas are largely based on clinical trials and hospital-based studies. This review summarizes data on incidence rates, survival, and genetic alterations from population-based studies of astrocytic and oligodendrogliomas that were carried out in the Canton of Zurich, Switzerland (approximately 1.16 million inhabitants). A total of 987 cases were diagnosed between 1980 and 1994 and patients were followed up at least until 1999. While survival rates for pilocytic astrocytomas were excellent (96% at 10 years), the prognosis of diffusely infiltrating gliomas was poorer, with median survival times (MST) of 5.6 years for low-grade astrocytoma WHO grade II, 1.6 years for anaplastic astrocytoma grade III, and 0.4 years for glioblastoma. For oligodendrogliomas the MSTwas 11.6 years for grade II and 3.5 years for grade III. TP53 mutations were most frequent in gemistocytic astrocytomas (88%), followed by fibrillary astrocytomas (53%) and oligoastrocytomas (44%), but infrequent (13%) in oligodendrogliomas. LOH 1p/19q typically occurred in tumors without TP53 mutations and were most frequent in oligodendrogliomas (69%), followed by oligoastrocytomas (45%), but were rare in fibrillary astrocytomas (7%) and absent in gemistocytic astrocytomas. Glioblastomas were most frequent (3.55 cases per 100,000 persons per year) adjusted to the European Standard Population, amounting to 69% of total incident cases. Observed survival rates were 42.4% at 6 months, 17.7% at one year, and 3.3% at 2 years. For all age groups, survival was inversely correlated with age, ranging from an MST of 8.8 months (<50 years) to 1.6 months (>80 years). In glioblastomas, LOH 10q was the most frequent genetic alteration (69%), followed by EGFR amplification (34%), TP53 mutations (31%), p16INK4a deletion (31%), and PTEN mutations (24%). LOH 10q occurred in association with any of the other genetic alterations, and was the only alteration associated with shorter survival of glioblastoma patients. Primary (de novo) glioblastomas prevailed (95%), while secondary glioblastomas that progressed from low-grade or anaplastic gliomas were rare (5%). Secondary glioblastomas were characterized by frequent LOH 10q (63%) and TP53 mutations (65%). Of the TP53 mutations in secondary glioblastomas, 57% were in hot-spot codons 248 and 273, while in primary glioblastomas, mutations were more evenly distributed. G:C-->A:T mutations at CpG sites were more frequent in secondary than primary glioblastomas, suggesting that the acquisition of TP53 mutations in these glioblastoma subtypes may occur through different mechanisms.

2 Followers
 · 
152 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all subregions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
  • [Show abstract] [Hide abstract]
    ABSTRACT: As tumours evolve, the daughter cells of the initiating cell often become molecularly heterogeneous and develop different functional properties and therapeutic vulnerabilities. In glioblastoma (GBM), a lethal form of brain cancer, the heterogeneous expression of the epidermal growth factor receptor (EGFR) poses a substantial challenge for the effective use of EGFR-targeted therapies. Understanding the mechanisms that cause EGFR heterogeneity in GBM should provide better insights into how they, and possibly other amplified receptor tyrosine kinases, affect cellular signalling, metabolism and drug resistance.
    Nature Reviews Cancer 04/2015; 15(5). DOI:10.1038/nrc3918 · 29.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The alteration of the epidermal growth factor receptor (EGFR)-driven signaling network is a characteristic feature of glioblastomas (GBM), and its inhibition represents a treatment strategy. However, EGFR-targeted interventions have been largely ineffective. Complex perturbations in this system are likely to be central to tumor cells with high adaptive capacity and resistance to therapies. We review key concepts and mechanisms relevant to EGFR-targeted treatment resistance at a systems level. Our understanding of treatment resistance as a systems-level phenomenon is necessary to develop effective therapeutic options for GBM patients. This is allowing us to go beyond the notion of therapeutic targets as single molecular components, into strategies that can weaken cancer signaling robustness and boost inherent network-level vulnerabilities.
    Cell Communication and Signaling 03/2015; 13. DOI:10.1186/s12964-015-0098-6 · 4.67 Impact Factor