Article

MovieMaker: a web server for rapid rendering of protein motions and interactions

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
Nucleic Acids Research (Impact Factor: 9.11). 08/2005; 33(Web Server issue):W358-62. DOI: 10.1093/nar/gki485
Source: PubMed

ABSTRACT MovieMaker is a web server that allows short ( approximately 10 s), downloadable movies of protein motions to be generated. It accepts PDB files or PDB accession numbers as input and automatically calculates, renders and merges the necessary image files to create colourful animations covering a wide range of protein motions and other dynamic processes. Users have the option of animating (i) simple rotation, (ii) morphing between two end-state conformers, (iii) short-scale, picosecond vibrations, (iv) ligand docking, (v) protein oligomerization, (vi) mid-scale nanosecond (ensemble) motions and (vii) protein folding/unfolding. MovieMaker does not perform molecular dynamics calculations. Instead it is an animation tool that uses a sophisticated superpositioning algorithm in conjunction with Cartesian coordinate interpolation to rapidly and automatically calculate the intermediate structures needed for many of its animations. Users have extensive control over the rendering style, structure colour, animation quality, background and other image features. MovieMaker is intended to be a general-purpose server that allows both experts and non-experts to easily generate useful, informative protein animations for educational and illustrative purposes. MovieMaker is accessible at http://wishart.biology.ualberta.ca/moviemaker.

0 Followers
 · 
122 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macromolecular visualization as well as automated structural and functional annotation tools play an increasingly important role in the post-genomic era, contributing significantly towards the understanding of molecular systems and processes. For example, three dimensional (3D) models help in exploring protein active sites and functional hot spots that can be targeted in drug design. Automated annotation and visualization pipelines can also reveal other functionally important attributes of macromolecules. These goals are dependent on the availability of advanced tools that integrate better the existing databases, annotation servers and other resources with state-of-the-art rendering programs. We present a new tool for protein structure analysis, with the focus on annotation and visualization of protein complexes, which is an extension of our previously developed POLYVIEW web server. By integrating the web technology with state-of-the-art software for macromolecular visualization, such as the PyMol program, POLYVIEW-3D enables combining versatile structural and functional annotations with a simple web-based interface for creating publication quality structure rendering, as well as animated images for Powerpoint, web sites and other electronic resources. The service is platform independent and no plug-ins are required. Several examples of how POLYVIEW-3D can be used for structural and functional analysis in the context of protein-protein interactions are presented to illustrate the available annotation options. POLYVIEW-3D server features the PyMol image rendering that provides detailed and high quality presentation of macromolecular structures, with an easy to use web-based interface. POLYVIEW-3D also provides a wide array of options for automated structural and functional analysis of proteins and their complexes. Thus, the POLYVIEW-3D server may become an important resource for researches and educators in the fields of protein science and structural bioinformatics. The new server is available at http://polyview.cchmc.org/polyview3d.html.
    BMC Bioinformatics 02/2007; 8:316. DOI:10.1186/1471-2105-8-316 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 3D structures of macromolecules are difficult to grasp and also to communicate. By their nature, movies or animations are particularly useful for highlighting key features by offering a 'guided tour' of structures and conformation changes. However, high-quality movies are rarely seen because they are currently difficult and time consuming to make. By adopting the traditional movie 'storyboard' concept, which gives guidance and direction to filming, eMovie makes the creation of lengthy molecular animations much easier. This tool is a plug-in for the open-source molecular graphics program PyMOL, and enables experts and novices alike to produce informative and high-quality molecular animations.
    Trends in Biochemical Sciences 06/2007; 32(5):199-204. DOI:10.1016/j.tibs.2007.03.008 · 13.52 Impact Factor

Preview

Download
3 Downloads
Available from