Article

Implication of cyclin-dependent kinase 5 in the neuroprotective properties of lithium.

Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Nucli Universitari de Pedralbes, E-08028 Barcelona, Spain.
Neuroscience (Impact Factor: 3.12). 02/2005; 134(3):1001-11. DOI: 10.1016/j.neuroscience.2005.04.061
Source: PubMed

ABSTRACT Although numerous studies have demonstrated a neuroprotective and anti-apoptotic role of lithium in neuronal cell cultures, the precise mechanism by which this occurs, remains to be elucidated. In this study, we evaluated the lithium-mediated neuroprotection against colchicine-induced apoptosis in cultured cerebellar granule neurons. Previously, it has been demonstrated that colchicine mediates apoptosis in cerebellar granule neurons through cytoskeletal alteration and activation of an intrinsic pro-apoptotic pathway. Recently we also demonstrated a potential role of cyclin-dependent kinase 5 (cdk5) in this pathway. Here we report that colchicine induces dephosphorylation in Ser-9 and phosphorylation in Tyr-216, and thus activation, of glycogen synthase kinase-3beta in cerebellar granule neurons, and that this modification is inhibited by the presence of 5 mM lithium. However, the selective glycogen synthase kinase-3beta inhibitors SB-415286 and SB-216763 were unable to prevent colchicine-induced apoptosis in these cells, suggesting that the anti-apoptotic activity of lithium is not mediated by glycogen synthase kinase-3beta under these conditions. On the other hand, 5 mM lithium prevented the colchicine-induced increase in cdk5 expression and breakdown of cdk5/p35 to cdk5/p25. In addition, we show that up-regulation of cdk5/p25 is unrelated to inhibition of the activity of myocyte enhancer factor 2, a pro-survival transcription factor. These data suggest a previously undescribed neuroprotective mechanism of lithium associated with the modulation of cdk5/p35 or cdk5/p25 expression.

0 Bookmarks
 · 
168 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the neuroprotective effects of lithium in an experimental neurodegeneration model gated to kainate (KA) receptor activation. The hippocampus from KA-treated mice and hippocampal cell cultures were used to evaluate the pathways regulated by chronic lithium pretreatment in both in vivo and in vitro models. Treatment with KA, as measured by fragmentation of alpha-spectrin and biochemically, induced the activation of calpain resulting in p35 cleavage to p25, indicating activation of cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3ss (GSK-3ss) and an increase in tau protein phosphorylation. Treatment with lithium reduced calpain activation and reduced the effects of cdk5 and GSK-3ss on tau. KA treatment of cultures resulted in neuronal demise. According to nuclear condensed cell counts, the addition of lithium to neuronal cell cultures (0.5-1 mM) a few days before KA treatment had neuroprotective and also antiapoptotic effects. The action of lithium on calpain/cdk5 and GSK-3ss pathways produced similar results in vivo. As calpain is activated by an increase in intracellular calcium, we showed that lithium reduced calcium concentrations in basal and KA-treated hippocampal cells, which was accompanied by an increase in NCX3, a Na+/Ca2+ exchanger pump. A robust neuroprotective effect of lithium in the excitotoxic process induced by KA in mouse hippocampus was demonstrated via modulation of calcium entry and the subsequent inhibition of the calpain pathway. These mechanisms may act in an additive way with other mechanisms previously described for lithium, suggesting that it may be useful as a possible therapeutic strategy for Alzheimer's disease.
    Bipolar Disorders 06/2010; 12(4):425-36. · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cluster headache is characterized by severe, strictly unilateral pain attacks lasting 15 to 180 minutes localized to orbital, temporal, and midface areas accompanied by ipsilateral autonomic features. It represents 1 of 3 primary headaches classified as trigeminal autonomic cephalalgias. While its prevalence is small, it is not uncommon for cluster headache patients to present at dental offices seeking relief for their pain. It is important for oral health care providers to recognize cluster headache and render an accurate diagnosis. This will avoid the pitfall of implementing unnecessary and inappropriate traditional dental treatments in hopes of alleviating this neurovascular pain. The following article is part 1 of a review on trigeminal autonomic cephalalgias and focuses on cluster headache. Aspects of cluster headache including its prevalence and incidence, genetics, pathophysiology, clinical presentation, classification and variants, diagnosis, medical management, and dental considerations are discussed.
    Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 10/2007; 104(3):345-58. · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mood stabilizer lithium inhibits glycogen synthase kinase-3 (GSK-3) directly or indirectly by enhancing serine phosphorylation of both α and β isoforms. Lithium robustly protected primary brain neurons from glutamate-induced excitotoxicity; these actions were mimicked by other GSK-3 inhibitors or silencing/inhibiting GSK-3α and/or β isoforms. Lithium rapidly activated Akt to enhance GSK-3 serine phosphorylation and to block glutamate-induced Akt inactivation. Lithium also up-regulated Bcl-2 and suppressed glutamate-induced p53 and Bax. Induction of brain-derived neurotrophic factor (BDNF) was required for lithium's neuroprotection to occur. BDNF promoter IV was activated by GSK-3 inhibition using lithium or other drugs, or through gene silencing/inactivation of either isoform. Further, lithium's neuroprotective effects were associated with inhibition of NMDA receptor-mediated calcium influx and down-stream signaling. In rodent ischemic models, post-insult treatment with lithium decreased infarct volume, ameliorated neurological deficits, and improved functional recovery. Up-regulation of heat-shock protein 70 and Bcl-2 as well as down-regulation of p53 likely contributed to lithium's protective effects. Delayed treatment with lithium improved functional MRI responses, which was accompanied by enhanced angiogenesis. Two GSK-3-regulated pro-angiogenic factors, matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor were induced by lithium. Finally, lithium promoted migration of mesenchymal stem cells (MSCs) by up-regulation of MMP-9 through GSK-3β inhibition. Notably, transplantation of lithium-primed MSCs into ischemic rats enhanced MSC migration to the injured brain regions and improved the neurological performance. Several other GSK-3 inhibitors have also been reported to be beneficial in rodent ischemic models. Together, GSK-3 inhibition is a rational strategy to combat ischemic stroke and other excitotoxicity-related brain disorders.
    Frontiers in Molecular Neuroscience 01/2011; 4:15.

Full-text (2 Sources)

View
46 Downloads
Available from
May 27, 2014