Article

dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference

Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Nucleic Acids Research (Impact Factor: 8.81). 08/2005; 33(Web Server issue):W589-91. DOI: 10.1093/nar/gki419
Source: PubMed

ABSTRACT Off-target effects are one of the most serious problems in RNA interference (RNAi). Here, we present dsCheck (http://dsCheck.RNAi.jp/), web-based online software for estimating off-target effects caused by the long double-stranded RNA (dsRNA) used in RNAi studies. In the biochemical process of RNAi, the long dsRNA is cleaved by Dicer into short-interfering RNA (siRNA) cocktails. The software simulates this process and investigates individual 19 nt substrings of the long dsRNA. Subsequently, the software promptly enumerates a list of potential off-target gene candidates based on the order of off-target effects using its novel algorithm, which significantly improves both the efficiency and the sensitivity of the homology search. The website not only provides a rigorous off-target search to verify previously designed dsRNA sequences but also presents 'off-target minimized' dsRNA design, which is essential for reliable experiments in RNAi-based functional genomics.

0 Followers
 · 
161 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adoption of antisense gene silencing as a novel disinfectant for prokaryotic organisms is hindered by poor silencing efficiencies. Few studies have considered the effects of off-targets on silencing efficiencies, especially in prokaryotic organisms. In this computational study, a novel algorithm was developed that determined and sorted the number of off-targets as a function of alignment length in Escherichia coli K-12 MG1655 and Mycobacterium tuberculosis H37Rv. The mean number of off-targets per a single location was calculated to be 14.1±13.3 and 36.1±58.5 for the genomes of E. coli K-12 MG1655 and M. tuberculosis H37Rv, respectively. Furthermore, when the entire transcriptome was analyzed, it was found that there was no general gene location that could be targeted to minimize or maximize the number of off-targets. In an effort to determine the effects of off-targets on silencing efficiencies, previously published studies were used. Analyses with acpP, ino1, and marORAB revealed a statistically significant relationship between the number of short alignment length off-targets hybrids and the efficacy of the antisense gene silencing, suggesting that the minimization of off-targets may be beneficial for antisense gene silencing in prokaryotic organisms. Copyright © 2014. Published by Elsevier Inc.
    Genomics 12/2014; 105(2). DOI:10.1016/j.ygeno.2014.11.010 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reverse-transcription quantitative real-time PCR (RT-qPCR), a sensitive technique is being extensively employed in quantification of gene expression. However this requires normalization with suitable reference gene (RG) which is crucial in minimizing inter sample variations. Information regarding suitable RG is scarce in general and more so in insects, including the cotton bollworm, Helicoverpa armigera, an economically important pest. In management of this pest RNA interference (RNAi) is perceived as a potential tool, which is achieved by double-stranded RNA (dsRNA) delivery. These studies demand accurate quantification of gene silencing. In this study we assessed the suitability of five RGs viz. β-actin (ACTB), 18S rRNA (18S), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-tubulin (TUB) and elongation fator-1-alfa (EF1-α) for gene expression studies in dsRNA treatment and across different developmental stages of H. armigera and ranked using geNorm, NormFinder and BestKeeper software programs. Data analysis revealed that best ranked RGs were varied in dsRNA treatment and in developmental stages. Under dsRNA treatment, 18S and GAPDH were more stable whereas, TUB and GAPDH were more stable across developmental stages. We also demonstrate that inappropriate selection of RG led to erroneous estimation of the target gene, chymotrypsin expression. These results facilitate accurate quantification of gene expression in H. armigera.
    Molecular Biology 10/2014; 48(6):813–822. DOI:10.1134/S0026893314060156 · 0.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In molting animals, a cuticular extracellular matrix forms the first barrier to infection and other environmental insults. In the nematode Caenorhabditis elegans there are two types of cuticle: a well-studied collagenous cuticle lines the body, and a poorly-understood chitinous cuticle lines the pharynx. In the posterior end of the pharynx is the grinder, a tooth-like cuticular specialization that crushes food prior to transport to the intestine for digestion. We here show that the grinder increases in size only during the molt. To gain molecular insight into the structure of the grinder and pharyngeal cuticle, we performed a microarray analysis to identify mRNAs increased during the molt. We found strong transcriptional induction during the molt of 12 of 15 previously identified abu genes encoding Prion-like (P) glutamine (Q) and asparagine (N) rich PQN proteins, as well as 15 additional genes encoding closely related PQN proteins. abu/pqn genes, which we name the abu/pqn paralog group (APPG) genes, were expressed in pharyngeal cells and the proteins encoded by two APPG genes we tested localized to the pharyngeal cuticle. Deleting the APPG gene we abu-14 caused abnormal pharyngeal cuticular structures and knocking down other APPG genes resulted in abnormal cuticular function. We propose that APPG proteins promote the assembly and function of a unique cuticular structure. The strong developmental regulation of the APPG genes raises the possibility that such genes would be identified in transcriptional profiling experiments in which the animals' developmental stage is not precisely staged.
    10/2014; DOI:10.1242/bio.20147500

Full-text (3 Sources)

Download
32 Downloads
Available from
May 17, 2014