Article

CACNA1A mutations causing episodic and progressive ataxia alter channel trafficking and kinetics.

Department of Neurology, University of California at Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
Neurology (Impact Factor: 8.25). 07/2005; 64(12):2090-7. DOI: 10.1212/01.WNL.0000167409.59089.C0
Source: PubMed

ABSTRACT CACNA1A encodes CaV2.1, the pore-forming subunit of P/Q-type voltage-gated calcium channel complexes. Mutations in CACNA1A cause a wide range of neurologic disturbances variably associated with cerebellar degeneration. Functional studies to date focus on electrophysiologic defects that do not adequately explain the phenotypic findings.
To investigate whether some missense mutations might interfere with protein folding and trafficking, eventually leading to protein aggregation and neuronal injury.
The authors studied the functional consequences of two pore missense mutations, C287Y and G293R, in two families with EA2, one newly discovered and the other previously reported. Both mutations caused episodic and interictal ataxia. The biophysical properties of mutant and wild type calcium channels were examined by whole-cell patch-clamp recordings in transfected COS-7 cells. The plasma membrane targeting was visualized by confocal fluorescence imaging on CaV2.1 tagged with green fluorescent protein.
The mutant channels exhibited a marked reduction in current expression and deficiencies in plasma membrane targeting.
In addition to altered channel function, the deficiency in protein misfolding and trafficking associated with the C287Y and G293R mutants may contribute to the slowly progressive cerebellar ataxia.

0 Bookmarks
 · 
49 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The therapeutic effects of 4-aminopyridine (4AP) were investigated in a randomized, double-blind, crossover trial in 10 subjects with familial episodic ataxia with nystagmus. After randomization, placebo or 4AP (5 mg 3 times daily) was administered for 2 3-month-long treatment periods separated by a 1-month-long washout period. The primary outcome measure was the number of ataxia attacks per month; the secondary outcome measures were the attack duration and patient-reported quality of life (Vestibular Disorders Activities of Daily Living Scale [VDADL]). Nonparametric tests and a random-effects model were used for statistical analysis. The diagnosis of episodic ataxia type 2 (EA2) was genetically confirmed in 7 subjects. Patients receiving placebo had a median monthly attack frequency of 6.50, whereas patients taking 4AP had a frequency of 1.65 (p = 0.03). Median monthly attack duration decreased from 13.65 hours with placebo to 4.45 hours with 4AP (p = 0.08). The VDADL score decreased from 6.00 to 1.50 (p = 0.02). 4AP was well-tolerated. This controlled trial on EA2 and familial episodic ataxia with nystagmus demonstrated that 4AP decreases attack frequency and improves quality of life. Level of evidence: This crossover study provides Class II evidence that 4AP decreases attack frequency and improves the patient-reported quality of life in patients with episodic ataxia and related familial ataxias.
    Neurology 07/2011; 77(3):269-75. · 8.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinocerebellar ataxia type 6 (SCA6), episodic ataxia type 2 (EA2) and familial hemiplegic migraine type 1 (FHM1) are allelic disorders of the gene CACNA1A encoding the P/Q subunit of a voltage gated calcium channel. While SCA6 is related to repeat expansions affecting the C-terminal part of the protein, EA2 and FHM phenotypes are usually associated with nonsense and missense mutations leading to impaired channel properties. In three unrelated families with dominant cerebellar ataxia, symptoms cosegregated with CACNA1A missense mutations of evolutionary highly conserved amino acids (exchanges p.E668K, p.R583Q and p.D302N). To evaluate pathogenic effects, in silico, protein modeling analyses were performed which indicate structural alterations of the novel mutation p.E668K within the homologous domain 2 affecting CACNA1A protein function.The phenotype is characterised by a very slowly progressive ataxia, while ataxic episodes or migraine are uncommon. These findings enlarge the phenotypic spectrum of CACNA1A mutations.
    European journal of medical genetics 01/2014; · 1.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myotonia congenita is a hereditary muscle disorder caused by mutations in the human voltage-gated chloride (Cl(-)) channel CLC-1. Myotonia congenita can be inherited in an autosomal recessive (Becker type) or dominant (Thomsen type) fashion. One hypothesis for myotonia congenita is that the inheritance pattern of the disease is determined by the functional consequence of the mutation on the gating of CLC-1 channels. Several disease-related mutations, however, have been shown to yield functional CLC-1 channels with no detectable gating defects. In this study, we have functionally and biochemically characterized a myotonia mutant: A531V. Despite a gating property similar to that of wild-type (WT) channels, the mutant CLC-1 channel displayed a diminished whole-cell current density and a reduction in the total protein expression level. Our biochemical analyses further demonstrated that the reduced expression of A531V can be largely attributed to an enhanced proteasomal degradation as well as a defect in protein trafficking to surface membranes. Moreover, the A531V mutant protein also appeared to be associated with excessive endosomal-lysosomal degradation. Neither the reduced protein expression nor the diminished current density was rescued by incubating A531V-expressing cells at 27°C. These results demonstrate that the molecular pathophysiology of A531V does not involve anomalous channel gating, but rather a disruption of the balance between the synthesis and degradation of the CLC-1 channel protein.
    PLoS ONE 01/2013; 8(2):e55930. · 3.73 Impact Factor