Article

CACNA1A mutations causing episodic and progressive ataxia alter channel trafficking and kinetics.

Department of Neurology, University of California at Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
Neurology (Impact Factor: 8.25). 07/2005; 64(12):2090-7. DOI:10.1212/01.WNL.0000167409.59089.C0
Source: PubMed

ABSTRACT CACNA1A encodes CaV2.1, the pore-forming subunit of P/Q-type voltage-gated calcium channel complexes. Mutations in CACNA1A cause a wide range of neurologic disturbances variably associated with cerebellar degeneration. Functional studies to date focus on electrophysiologic defects that do not adequately explain the phenotypic findings.
To investigate whether some missense mutations might interfere with protein folding and trafficking, eventually leading to protein aggregation and neuronal injury.
The authors studied the functional consequences of two pore missense mutations, C287Y and G293R, in two families with EA2, one newly discovered and the other previously reported. Both mutations caused episodic and interictal ataxia. The biophysical properties of mutant and wild type calcium channels were examined by whole-cell patch-clamp recordings in transfected COS-7 cells. The plasma membrane targeting was visualized by confocal fluorescence imaging on CaV2.1 tagged with green fluorescent protein.
The mutant channels exhibited a marked reduction in current expression and deficiencies in plasma membrane targeting.
In addition to altered channel function, the deficiency in protein misfolding and trafficking associated with the C287Y and G293R mutants may contribute to the slowly progressive cerebellar ataxia.

0 0
 · 
0 Bookmarks
 · 
43 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Myotonia congenita is a hereditary muscle disorder caused by mutations in the human voltage-gated chloride (Cl(-)) channel CLC-1. Myotonia congenita can be inherited in an autosomal recessive (Becker type) or dominant (Thomsen type) fashion. One hypothesis for myotonia congenita is that the inheritance pattern of the disease is determined by the functional consequence of the mutation on the gating of CLC-1 channels. Several disease-related mutations, however, have been shown to yield functional CLC-1 channels with no detectable gating defects. In this study, we have functionally and biochemically characterized a myotonia mutant: A531V. Despite a gating property similar to that of wild-type (WT) channels, the mutant CLC-1 channel displayed a diminished whole-cell current density and a reduction in the total protein expression level. Our biochemical analyses further demonstrated that the reduced expression of A531V can be largely attributed to an enhanced proteasomal degradation as well as a defect in protein trafficking to surface membranes. Moreover, the A531V mutant protein also appeared to be associated with excessive endosomal-lysosomal degradation. Neither the reduced protein expression nor the diminished current density was rescued by incubating A531V-expressing cells at 27°C. These results demonstrate that the molecular pathophysiology of A531V does not involve anomalous channel gating, but rather a disruption of the balance between the synthesis and degradation of the CLC-1 channel protein.
    PLoS ONE 01/2013; 8(2):e55930. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The therapeutic effects of 4-aminopyridine (4AP) were investigated in a randomized, double-blind, crossover trial in 10 subjects with familial episodic ataxia with nystagmus. After randomization, placebo or 4AP (5 mg 3 times daily) was administered for 2 3-month-long treatment periods separated by a 1-month-long washout period. The primary outcome measure was the number of ataxia attacks per month; the secondary outcome measures were the attack duration and patient-reported quality of life (Vestibular Disorders Activities of Daily Living Scale [VDADL]). Nonparametric tests and a random-effects model were used for statistical analysis. The diagnosis of episodic ataxia type 2 (EA2) was genetically confirmed in 7 subjects. Patients receiving placebo had a median monthly attack frequency of 6.50, whereas patients taking 4AP had a frequency of 1.65 (p = 0.03). Median monthly attack duration decreased from 13.65 hours with placebo to 4.45 hours with 4AP (p = 0.08). The VDADL score decreased from 6.00 to 1.50 (p = 0.02). 4AP was well-tolerated. This controlled trial on EA2 and familial episodic ataxia with nystagmus demonstrated that 4AP decreases attack frequency and improves quality of life. Level of evidence: This crossover study provides Class II evidence that 4AP decreases attack frequency and improves the patient-reported quality of life in patients with episodic ataxia and related familial ataxias.
    Neurology 07/2011; 77(3):269-75. · 8.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Voltage-gated calcium channels are a family of integral membrane calcium-selective proteins found in all excitable and many nonexcitable cells. Calcium influx affects membrane electrical properties by depolarizing cells and generally increasing excitability. Calcium entry further regulates multiple intracellular signaling pathways as well as the biochemical factors that mediate physiological functions such as neurotransmitter release and muscle contraction. Small changes in the biophysical properties or expression of calcium channels can result in pathophysiological changes leading to serious chronic disorders. In humans, mutations in calcium channel genes have been linked to a number of serious neurological, retinal, cardiac, and muscular disorders.
    BioFactors 05/2011; 37(3):197-205. · 3.09 Impact Factor

Jijun Wan