Article

Cognitive differences in dementia patients with autopsy-verified AD, Lewy body pathology, or both

Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, Seattle, Washington, United States
Neurology (Impact Factor: 8.3). 06/2005; 64(12):2069-73. DOI: 10.1212/01.WNL.0000165987.89198.65
Source: PubMed

ABSTRACT To examine the neuropsychological profile of dementia patients from a community-based autopsy sample of dementia, comparing Alzheimer disease (AD), Lewy body pathology (LBP) alone, and LBP with coexistent AD (AD/LBP).
The authors reviewed 135 subjects from a community-based study of dementia for whom autopsy and brain tissue was available. Diagnostic groups were determined according to standard neuropathologic methods and criteria, and the presence of LBs was determined using alpha-synuclein immunostaining. Neuropathologically defined diagnostic groups of AD, AD/LBP, and LBP were examined for differences on neuropsychological test performance at the time of initial study enrollment.
There were 48 patients with AD alone, 65 with LB and AD pathology (AD/LBP), and 22 with LBP alone (LBP alone). There were no significant differences between groups demographically or on performance of enrollment Mini-Mental State Examination (MMSE) or Dementia Rating Scale (DRS). AD patients performed worse than the LBP patients on memory measures (Fuld Object Memory Evaluation Delayed Recall, Wechsler Memory Scale Logical Memory Immediate and Delayed Recall; p < 0.05) and a naming task (Consortium to Establish a Registry for Alzheimer's Disease Naming; p < 0.05). LBP patients were more impaired than AD patients on executive function (Trail Making Test Part B; p < 0.05) and attention tasks (Wechsler Adult Intelligence Scale-Revised Digit Span; p < 0.05). Decline in MMSE and DRS scores over time were greatest in the patients with AD/LBP.
In a community-based sample of older, medically complicated patients with dementia, there are neuropsychological differences between dementia subtypes at the time of diagnosis. In particular, patients with Alzheimer disease (AD) alone and AD/Lewy body pathology (LBP) had more severe memory impairment than patients with LBP. LBP alone was associated with more severe executive dysfunction. Patients with AD/LBP had the most rapid rate of cognitive decline.

0 Followers
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dementia with Lewy bodies (DLB) is the second most common type of degenerative dementia following Alzheimer's disease (AD). DLB is clinically and pathologically related to Parkinson's disease (PD) and PD dementia, and the three disorders can be viewed as existing on a spectrum of Lewy body disease. In recent years there has been a concerted effort to establish the phenotypes of AD and PD in the prodromal phase (before the respective syndromes of cognitive and motor impairment are expressed). Evidence for the prodromal presentation of DLB is also emerging. This paper briefly reviews what is known about the clinical presentation of prodromal DLB before discussing the pathology of Lewy body disease and how this relates to potential biomarkers of prodromal DLB. The presenting features of DLB can be broadly placed in three categories: cognitive impairment (particularly nonamnestic cognitive impairments), behavioural/psychiatric phenomena (for example, hallucinations, rapid eye movement sleep behaviour disorder (RBD)) and physical symptoms (for example, parkinsonism, decreased sense of smell, autonomic dysfunction). Some noncognitive symptoms such as constipation, RBD, hyposmia and postural dizziness can predate the onset of memory impairment by several years in DLB. Pathological studies of Lewy body disease have found that the earliest sites of involvement are the olfactory bulb, the dorsal motor nucleus of the vagal nerve, the peripheral autonomic nervous system, including the enteric nervous system, and the brainstem. Some of the most promising early markers for DLB include the presence of RBD, autonomic dysfunction or hyposmia, (123)I-metaiodobenzylguanidine cardiac scintigraphy, measures of substantia nigra pathology and skin biopsy for α-synuclein in peripheral autonomic nerves. In the absence of disease-modifying therapies, the diagnosis of prodromal DLB is of limited use in the clinic. That said, knowledge of the prodromal development of DLB could help clinicians identify cases of DLB where the diagnosis is uncertain. Prodromal diagnosis is of great importance in research, where identifying Lewy body disease at an earlier stage may allow researchers to investigate the initial phases of dementia pathophysiology, develop treatments designed to interrupt the development of the dementia syndrome and accurately identify the patients most likely to benefit from these treatments.
    Alzheimer's Research and Therapy 01/2014; 6(4):46. DOI:10.1186/alzrt274 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple different pathological protein aggregates are frequently seen in human postmortem brains and hence mixed pathology is common. Mixed dementia on the other hand is less frequent and neuropathologically should only be diagnosed if criteria for more than one full blown disease are met. We quantitatively measured the amount of hyperphosphorylated microtubule associated tau (HP-τ), amyloid-β protein (Aβ) and α-synuclein (α-syn) in cases that were neuropathologically diagnosed as mixed Alzheimer's disease (AD) and neocortical Lewy body disease (LBD) but clinically presented either as dementia due to AD or LBD, the latter including dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). Our study group consisted of 28 cases (mean age, 76.11 SE: ±1.29 years; m:f, 17:11) of which 19 were neuropathologically diagnosed as mixed AD/DLB. Clinically, 8 mixed AD/DLB cases were diagnosed as AD (cAD), 8 as DLB (cDLB) and 3 as PDD (cPDD). In addition, we investigated cases that were both clinically and neuropathologically diagnosed as either AD (pure AD; n = 5) or DLB/neocortical LBD (pure DLB; n = 4). Sections from neocortical, limbic and subcortical areas were stained with antibodies against HP-τ, Aβ and α-syn. The area covered by immunopositivity was measured using image analysis. cAD cases had higher HP-τ loads than both cDLB and cPDD and the distribution of HP-τ in cAD was similar to the one observed in pure AD whilst cDLB showed comparatively less hippocampal HP-τ load. cPDD cases showed lower HP-τ and Aβ loads and higher α-syn loads. Here, we show that in neuropathologically mixed AD/DLB cases both the amount and the topographical distribution of pathological protein aggregates differed between distinct clinical phenotypes. Large-scale clinicopathological correlative studies using a quantitative methodology are warranted to further elucidate the neuropathological correlate of clinical symptoms in cases with mixed pathology.
    Acta Neuropathologica 03/2015; 129(5). DOI:10.1007/s00401-015-1406-3 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was to explore the molecular mechanisms underpinning the synergetic effect between β-amyloid (Aβ) and α-synuclein (α-syn) on synapses dysfunction during the development of neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and Alzheimer disease (AD). The primary cultured hippocampal neurons prepared from the fetal tissue of mice were divided into six groups and treated with DMSO, Aβ42-1, α-syn, Aβ1-42, α-syn plus Aβ42-1 and α-syn plus Aβ1-42, respectively. After incubation for 24h, the synapsin I content was calculated by immunofluorescence and the synaptic vesicle recycling was monitored by FM1-43 staining. Furthermore, the expression of cysteine string protein-α (CSPα) detected by western blot was also conducted. Either Aβ1-42 or α-syn alone could induce a significant synapses dysfunction through reducing the content of synapsin I, inhibiting the synaptic vesicle recycling as well as down-regulating the expression of CSPα compared with the controls (P<0.05). However, simultaneous intervention with both α-syn and Aβ1-42 aggravated these effects in cultured hippocampal neurons compared with the treatment with α-syn (synapsin I content: P<0.001; synaptic vesicle recycling: P=0.007; CSPα expression: P<0.001) or Aβ1-42 (synapsin I number: P<0.001; synaptic vesicle recycling: P=0.007 CSPα expression: P<0.001) alone. There was synergistic effect between Aβ and α-syn on synapses dysfunction through reducing the synapsin I content, inhibiting the synaptic vesicle recycling and down-regulating the expression of CSPα in several neurodegenerative diseases. Copyright © 2014. Published by Elsevier B.V.
    Journal of Chemical Neuroanatomy 11/2014; 63C:1-5. DOI:10.1016/j.jchemneu.2014.11.001 · 2.52 Impact Factor

Full-text (2 Sources)

Download
70 Downloads
Available from
May 29, 2014