Article

Contamination of retail foods, particularly turkey, from community markets (Minnesota, 1999-2000) with antimicrobial-resistant and extraintestinal pathogenic Escherichia coli.

Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota 55417, USA.
Foodborne Pathogens and Disease (Impact Factor: 2.09). 02/2005; 2(1):38-49. DOI: 10.1089/fpd.2005.2.38
Source: PubMed

ABSTRACT To assess the food supply as a possible vehicle for antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC), we defined the prevalence, density, clonal diversity, virulence characteristics, and antimicrobial resistance profiles of E. coli among diverse retail food items. A microbiological survey was undertaken of 346 food items (vegetables, produce, beef, pork, chicken, and turkey) purchased as a convenience sample from 16 retail markets within the Minneapolis-St. Paul area in 1999-2000, with selective cultures for E. coli and extensive molecular and phenotypic characterization of E. coli isolates. Meats, particularly turkey products, were often extensively contaminated with antimicrobial-resistant E. coli and ExPEC, to a much greater extent than were produce items, even those from farmer's markets. Moreover, meat-source E. coli differed substantially from produce-source E. coli with respect to phylogenetic background (more commonly from virulence-associated phylogenetic groups B2 or D), virulence genotype (more extensive), and antimicrobial resistance profile (more extensive). Molecular typing methods matched four turkey-source isolates to selected human clinical and fecal isolates representing the O7:K1:H-, O83:K1, and O73/O77:K52:H18 ("clonal group A") clonal groups of ExPEC. Meats purchased in grocery stores, particularly turkey products, are frequently contaminated with antimicrobial-resistant E. coli and ExPEC. Further study is needed regarding the origins and health consequences of these foodborne organisms, both to clarify the need for and to guide the possible development of appropriate regulatory and monitoring systems and preventive interventions.

0 Followers
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli is the most common cause of urinary tract infection (UTI). Phylogroup B2 and D isolates are associated with UTI. It has been proposed that E. coli causing UTI could have an animal origin. The objective of this study was to investigate the phylogroups and antimicrobial resistance, and their possible associations in E. coli isolates from patients with UTI, community-dwelling humans, broiler chicken meat, broiler chickens, pork, and pigs in Denmark. A total of 964 geographically and temporally matched E. coli isolates from UTI patients (n = 102), community-dwelling humans (n = 109), Danish (n = 197) and imported broiler chicken meat (n = 86), Danish broiler chickens (n = 138), Danish (n = 177) and imported pork (n = 10), and Danish pigs (n = 145) were tested for phylogroups (A, B1, B2, D, and nontypeable [NT] isolates) and antimicrobial susceptibility. Phylogroup A, B1, B2, D, and NT isolates were detected among all groups of isolates except for imported pork isolates. Antimicrobial resistance to three (for B2 isolates) or five antimicrobial agents (for A, B1, D, and NT isolates) was shared among isolates regardless of origin. Using cluster analysis to investigate antimicrobial resistance data, we found that UTI isolates always grouped with isolates from meat and/or animals. We detected B2 and D isolates, that are associated to UTI, among isolates from broiler chicken meat, broiler chickens, pork, and pigs. Although B2 isolates were found in low prevalences in animals and meat, these sources could still pose a risk for acquiring uropathogenic E. coli. Further, E. coli from animals and meat were very similar to UTI isolates with respect to their antimicrobial resistance phenotype. Thus, our study provides support for the hypothesis that a food animal and meat reservoir might exist for UTI-causing E. coli.
    Foodborne Pathogens and Disease 05/2010; 7(5):537-47. DOI:10.1089/fpd.2009.0409 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July-September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.
    Interdisciplinary Perspectives on Infectious Diseases 09/2009; 2009:476150. DOI:10.1155/2009/476150
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extraintestinal pathogenic Escherichia coli (ExPEC) are major players in human urinary tract infections, neonatal bacterial meningitis, and sepsis. Recently, it has been suggested that there might be a zoonotic component to these infections. To determine whether the E. coli contaminating retail poultry are possible extraintestinal pathogens, and to ascertain the source of these contaminants, they were assessed for their genetic similarities to E. coli incriminated in colibacillosis (avian pathogenic E. coli [APEC]), E. coli isolated from multiple locations of apparently healthy birds at slaughter, and human ExPEC. It was anticipated that the retail poultry isolates would most closely resemble avian fecal E. coli since only apparently healthy birds are slaughtered, and fecal contamination of carcasses is the presumed source of meat contamination. Surprisingly, this supposition proved incorrect, as the retail poultry isolates exhibited gene profiles more similar to APEC than to fecal isolates. These isolates contained a number of ExPEC-associated genes, including those associated with ColV virulence plasmids, and many belonged to the B2 phylogenetic group, known to be virulent in human hosts. Additionally, E. coli isolated from the crops and gizzards of apparently healthy birds at slaughter also contained a higher proportion of ExPEC-associated genes than did the avian fecal isolates examined. Such similarities suggest that the widely held beliefs about the sources of poultry contamination may need to be reassessed. Also, the presence of ExPEC-like clones on retail poultry meat means that we cannot yet rule out poultry as a source of ExPEC human disease.
    Foodborne Pathogens and Disease 07/2009; 6(6):657-67. DOI:10.1089/fpd.2009.0266 · 2.09 Impact Factor