Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis.

Department of Medicine(Respiratory Division), University of Bristish Columbia and The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, St Paul's Hospital, Room #368A, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6.
Thorax (Impact Factor: 8.56). 07/2005; 60(7):570-5. DOI: 10.1136/thx.2004.037135
Source: PubMed

ABSTRACT Individuals with severely impaired lung function have an increased risk of lung cancer. Whether milder reductions in forced expiratory volume in 1 second (FEV(1)) also increase the risk of lung cancer is controversial. Moreover, there is little consensus on whether men and women have similar risks for lung cancer for similar decreases in FEV(1).
A search was conducted of PubMed and EMBASE from January 1966 to January 2005 and studies that examined the relationship between FEV1 and lung cancer were identified. The search was limited to studies that were population based, employed a prospective design, were large in size (> or = 5000 participants), and adjusted for cigarette smoking status.
Twenty eight abstracts were identified, six of which did not report FEV1 and eight did not adjust for smoking. Included in this report are four studies that reported FEV1 in quintiles. The risk of lung cancer increased with decreasing FEV1. Compared with the highest quintile of FEV1 (> 100% of predicted), the lowest quintile of FEV1 (< approximately 70% of predicted) was associated with a 2.23 fold (95% confidence interval (CI) 1.73 to 2.86) increase in the risk for lung cancer in men and a 3.97 fold increase in women (95% CI 1.93 to 8.25). Even relatively small decrements in FEV1 ( approximately 90% of predicted) increased the risk for lung cancer by 30% in men (95% CI 1.05 to 1.62) and 2.64 fold in women (95% CI 1.30 to 5.31).
Reduced FEV1 is strongly associated with lung cancer. Even a relatively modest reduction in FEV1 is a significant predictor of lung cancer, especially among women.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease with a prevalence that increases with the aging of the subject. It presents a high prevalence of comorbidities, such as cognitive decline, which is gaining great clinical relevance in recent years. Factors such as pulmonary function, hypoxemia, hypercapnia or exacerbations contribute to the decline of cognitive functions. The nutritional status has been added to these factors as contributing to cognitive function decline when presenting in COPD.
    Nutrición hospitalaria. 01/2014; 30(5):1152-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer. Migration of circulating tumor cells (CTCs) into the blood stream is an early event that occurs during carcinogenesis. We aimed to examine the presence of CTCs in complement to CT-scan in COPD patients without clinically detectable lung cancer as a first step to identify a new marker for early lung cancer diagnosis. The presence of CTCs was examined by an ISET filtration-enrichment technique, for 245 subjects without cancer, including 168 (68.6%) COPD patients, and 77 subjects without COPD (31.4%), including 42 control smokers and 35 non-smoking healthy individuals. CTCs were identified by cytomorphological analysis and characterized by studying their expression of epithelial and mesenchymal markers. COPD patients were monitored annually by low-dose spiral CT. CTCs were detected in 3% of COPD patients (5 out of 168 patients). The annual surveillance of the CTC-positive COPD patients by CT-scan screening detected lung nodules 1 to 4 years after CTC detection, leading to prompt surgical resection and histopathological diagnosis of early-stage lung cancer. Follow-up of the 5 patients by CT-scan and ISET 12 month after surgery showed no tumor recurrence. CTCs detected in COPD patients had a heterogeneous expression of epithelial and mesenchymal markers, which was similar to the corresponding lung tumor phenotype. No CTCs were detected in control smoking and non-smoking healthy individuals. CTCs can be detected in patients with COPD without clinically detectable lung cancer. Monitoring "sentinel" CTC-positive COPD patients may allow early diagnosis of lung cancer.
    PLoS ONE 10/2014; 9(10):e111597. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The association between chronic obstructive pulmonary disease (COPD) and lung cancer has long been a subject of intense debate. The high prevalence of COPD in elderly smokers inevitably strengthens their coincidence. In addition to this contingent coincidence, recent studies have revealed a close association between the two diseases that is independent of the smoking history; that is, the existence of COPD is an independent risk factor for the development of lung cancer. Molecular-based evidence has been accumulating as a result of the efforts to explain the underlying mechanisms of this association. These mechanisms may include the following: the retention of airborne carcinogens followed by the activation of oncogenes and the suppression of tumor suppressor genes; the complex molecular mechanism associated with chronic inflammation in the distal airways of patients with COPD; the possible involvement of putative distal airway stem cells; and genetic factors that are common to both COPD and lung cancer. The existence of COPD in patients with lung cancer may potentially affect the process of diagnosis, surgical resection, radiotherapy, chemotherapy, and end-of-life care. The comprehensive management of COPD is extremely important for the appropriate treatment of lung cancer. Surgical resections with the aid of early interventions for COPD are often possible, even for patients with mild-to-moderate COPD. New challenges, such as lung cancer CT screening for individuals at high risk, are now in the process of being implemented. Evaluating the risk of lung cancer in patients with COPD may be warranted in community-based lung cancer screening.
    World journal of clinical oncology. 10/2014; 5(4):660-6.

Full-text (2 Sources)

Available from
May 21, 2014