Article

Pyruvate improves cardiac electromechanical and metabolic recovery from cardiopulmonary arrest and resuscitation.

Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.
Resuscitation (Impact Factor: 3.96). 08/2005; 66(1):71-81. DOI: 10.1016/j.resuscitation.2004.12.016
Source: PubMed

ABSTRACT Severe depletion of myocardial energy and antioxidant resources during cardiac arrest culminates in electromechanical dysfunction following recovery of spontaneous circulation (ROSC). A metabolic fuel and natural antioxidant, pyruvate augments myocardial energy and antioxidant redox states in parallel with its enhancement of contractile performance of stunned and oxidant-challenged hearts. This study tested whether pyruvate improves post-arrest cardiac function and metabolism. Beagles were subjected to 5 min cardiac arrest and 5 min open-chest cardiac compression (OCCC: 80 compressions min(-1); aortic pressure 60-70 mmHg), then epicardial dc countershocks (5-10 J) were applied to restore sinus rhythm. Pyruvate was infused i.v. throughout OCCC and the first 25 min ROSC to a steady-state arterial concentration of 3.6+/-0.2 mM. Control experiments received NaCl infusions. Phosphocreatine phosphorylation potential (approximately PCr) and glutathione/glutathione disulfide ratio (GSH/GSSG), measured in snap-frozen left ventricle, indexed energy and antioxidant redox states, respectively. In control experiments, left ventricular pressure development, dP/dt and carotid flow initially recovered upon defibrillation, but then fell 40-50% by 3 h ROSC. ST segment displacement in lead II ECG persisted throughout ROSC. Approximately PCr collapsed and GSH/GSSG fell 61% during arrest. Both variables recovered partially during OCCC and completely during ROSC. Pyruvate temporarily increased approximately PCr and GSH/GSSG during OCCC and the first 25 min ROSC and enhanced pressure development, dP/dt and carotid flow at 15-25 min ROSC. Contractile function stabilized and ECG normalized at 2-3 h ROSC, despite post-infusion pyruvate clearance and waning of its metabolic benefits. In conclusion, intravenous pyruvate therapy increases energy reserves and antioxidant defenses of resuscitated myocardium. These temporary metabolic improvements support post-arrest recovery of cardiac electromechanical performance.

Full-text

Available from: Jie Sun, May 28, 2015
0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because it is the product of glycolysis and main substrate for mitochondrial respiration, lactate is the central metabolic intermediate in cerebral energy substrate delivery. Our recent studies on healthy controls and patients following traumatic brain injury (TBI) using [6,6-(2)H2]glucose and [3-(13)C]lactate, along with cerebral blood flow (CBF) and arterial-venous (jugular bulb) difference measurements for oxygen, metabolite levels, isotopic enrichments and (13)CO2 show a massive and previously unrecognized mobilization of lactate from corporeal (muscle, skin, and other) glycogen reserves in TBI patients who were studied 5.7 ± 2.2 days after injury at which time brain oxygen consumption and glucose uptake (CMRO2 and CMRgluc, respectively) were depressed. By tracking the incorporation of the (13)C from lactate tracer we found that gluconeogenesis (GNG) from lactate accounted for 67.1 ± 6.9%, of whole-body glucose appearance rate (Ra) in TBI, which was compared to 15.2 ± 2.8% (mean ± SD, respectively) in healthy, well-nourished controls. Standard of care treatment of TBI patients in state-of-the-art facilities by talented and dedicated heath care professionals reveals presence of a catabolic Body Energy State (BES). Results are interpreted to mean that additional nutritive support is required to fuel the body and brain following TBI. Use of a diagnostic to monitor BES to provide health care professionals with actionable data in providing nutritive formulations to fuel the body and brain and achieve exquisite glycemic control are discussed. In particular, the advantages of using inorganic and organic lactate salts, esters and other compounds are examined. To date, several investigations on brain-injured patients with intact hepatic and renal functions show that compared to dextrose + insulin treatment, exogenous lactate infusion results in normal glycemia.
    Frontiers in Neuroscience 02/2015; 8. DOI:10.3389/fnins.2014.00408
  • [Show abstract] [Hide abstract]
    ABSTRACT: In retrospective swine and human investigations of ventricular fibrillation (VF) cardiac arrest, the amplitude-spectral area (AMSA), determined from the VF waveform, can predict defibrillation and a return of spontaneous circulation (ROSC). We hypothesized that an algorithm using AMSA in real time to direct postshock chest compression (CC) duration would shorten the time to ROSC and improve neurological outcome in a swine model of VF cardiac arrest with acute myocardial infarction (AMI) or nonischemic myocardium. AMI was induced by occlusion of the left anterior descending artery. VF was untreated for 10 min. Animals were randomized to either traditional resuscitation with 2 min of CC after each shock or to an AMSA-guided algorithm where postshock CCs were shortened to 1 min if the preshock AMSA exceeded 20 mV-Hz. A total of 48 animals were studied, 12 in each group (AMI vs. normal, and traditional vs. AMSA-guided). There was a nonsignificant shorter time to ROSC with an AMSA-guided approach in AMI swine (17.2 ± 3.4 vs. 18.5 ± 4.7 min, p = NS), and in normal swine (13.5 ± 1.1 vs. 14.4 ± 1.2, p = NS). Neurological outcome was similar between traditional and AMSA-guided animals. AMSA predicted ROSC (p < 0.001), and a threshold of 20 mV-Hz gave a sensitivity of 89%, with specificity of 29%. Although AMSA predicts ROSC in a swine model of VF arrest in both AMI and normal swine, a waveform-guided approach that uses AMSA to direct postshock CC duration does not significantly shorten the time to ROSC or alter neurological outcome. Copyright © 2014 Elsevier Inc. All rights reserved.
    Journal of Emergency Medicine 12/2014; 48(3). DOI:10.1016/j.jemermed.2014.09.057 · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To test the hypothesis that fluid resuscitation with Ringer's solution enriched with pyruvate (PR), a physiological antioxidant and energy substrate, affords protection of myocardial metabolism and electrophysiological performance superior to lactated Ringer's (LR) during hypovolemia and hindlimb ischemia-reperfusion. Male domestic goats (25-30 kg) were exsanguinated to a mean arterial pressure of 48 ± 1 mmHg. Right hindlimb ischemia was imposed for 90 min by applying a tourniquet and femoral crossclamp. LR or PR, infused iv, delivered 0.05 mmol/kg per minute L-lactate or pyruvate, respectively, from 30 min hindlimb ischemia until 30 min post-ischemia. Time controls (TC) underwent neither hemorrhage, hindlimb ischemia nor resuscitation. Goats were sacrificed and left ventricular myocardium biopsied at 90 min fluid resuscitation (n = 6 per group) or 3.5 h later (n = 9 LR, 10 PR, 8 TC). Myocardial 8-isoprostane content, phosphocreatine phosphorylation potential, creatine kinase activity, and heart rate-adjusted QT interval (QTc) variability were evaluated at 90 min resuscitation and 3.5 h post-resuscitation. PR sharply lowered pro-arrhythmic QTc variability vs LR (P < 0.05); this effect persisted 3.5 h post-resuscitation. PR lowered myocardial 8-isoprostane content, a product of oxidative stress, by 39 and 37% during and 3.5 h after resuscitation, respectively, vs LR. Creatine kinase activity fell 42% post-LR vs TC (P < 0.05), but was stable post-PR (P < 0.02 vs post-LR). PR doubled phosphocreatine phosphorylation potential, a measure of ATP free energy state, vs TC and LR (P < 0.05); this energetic enhancement persisted 3.5 h post-resuscitation. By augmenting myocardial energy state and protecting creatine kinase activity, pyruvate-enriched resuscitation stabilized cardiac electrical function during central hypovolemia and hindlimb ischemia-reperfusion.
    11/2013; 2(4):56-64. DOI:10.5492/wjccm.v2.i4.56