Article

Mutations in FLNB cause boomerang dysplasia.

Journal of Medical Genetics (Impact Factor: 5.64). 08/2005; 42(7):e43. DOI: 10.1136/jmg.2004.029967
Source: PubMed

ABSTRACT Boomerang dysplasia (BD) is a perinatal lethal osteochondrodysplasia, characterised by absence or underossification of the limb bones and vertebrae. The BD phenotype is similar to a group of disorders including atelosteogenesis I, atelosteogenesis III, and dominantly inherited Larsen syndrome that we have recently shown to be associated with mutations in FLNB, the gene encoding the actin binding cytoskeletal protein, filamin B. We report the identification of mutations in FLNB in two unrelated individuals with boomerang dysplasia. The resultant substitutions, L171R and S235P, lie within the calponin homology 2 region of the actin binding domain of filamin B and occur at sites that are evolutionarily well conserved. These findings expand the phenotypic spectrum resulting from mutations in FLNB and underline the central role this protein plays during skeletogenesis in humans.

Download full-text

Full-text

Available from: Louise S Bicknell, Jul 01, 2015
0 Followers
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dominant missense mutations in FLNB, encoding the actin-cross linking protein filamin B (FLNB), cause a broad range of skeletal dysplasias with varying severity by an unknown mechanism. Here these FLNB mutations are shown to cluster in exons encoding the actin-binding domain (ABD) and filamin repeats surrounding the flexible hinge 1 region of the FLNB rod domain. Despite being positioned in domains that bind actin, it is unknown if these mutations perturb cytoskeletal structure. Expression of several full-length FLNB constructs containing ABD mutations resulted in the appearance of actin-containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations demonstrated that with only one exception disease-associated substitutions, surrounding hinge 1 demonstrated no tendency to form actin-filamin foci. The exception, a substitution in filamin repeat 6, lies within a region previously implicated in filamin-actin binding. These data are consistent with mutations in the ABD conferring enhanced actin-binding activity but suggest that substitutions affecting repeats near the flexible hinge region of FLNB precipitate the same phenotypes through a different mechanism.
    Human Mutation 04/2012; 33(4):665-73. DOI:10.1002/humu.22012 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins are complex biomacromolecules playing fundamental roles in the physiological processes of all living organisms. They function as structural units, enzymes, transporters, process regulators, and signal transducers. Defects in protein functions often derive from genetic mutations altering the protein structure, and impairment of essential protein functions manifests itself as pathological conditions. Proteins operate through interactions, and all protein functions depend on protein structure. In order to understand biological mechanisms at the molecular level, one has to know the structures of the proteins involved. This thesis covers structural and functional characterization of human filamins. Filamins are actin-binding and -bundling proteins that have numerous interaction partners. In addition to their actin-organizing functions, filamins are also known to have roles in cell adhesion and locomotion, and to participate in the logistics of cell membrane receptors, and in the coordination of intracellular signaling pathways. Filamin mutations in humans induce severe pathological conditions affecting the brain, bones, limbs, and the cardiovascular system. Filamins are large modular proteins composed of an N-terminal actin-binding domain and 24 consecutive immunoglobulin-like domains (IgFLNs). Nuclear magnetic resonance (NMR) spectroscopy is a versatile method of gaining insight into protein structure, dynamics and interactions. NMR spectroscopy was employed in this thesis to study the atomic structure and interaction mechanisms of C-terminal IgFLNs, which are known to house the majority of the filamin interaction sites. The structures of IgFLN single-domains 17 and 23 and IgFLN domain pairs 16-17 and 18-19 were determined using NMR spectroscopy. The structures of domain pairs 16 17 and 18 19 both revealed novel domain domain interaction modes of IgFLNs. NMR titrations were employed to characterize the interactions of filamins with glycoprotein Ibα, FilGAP, integrin β7 and dopamine receptors. Domain packing of IgFLN domain sextet 16 21 was further characterized using residual dipolar couplings and NMR relaxation analysis. This thesis demonstrates the versatility and potential of NMR spectroscopy in structural and functional studies of multi-domain proteins. Proteiinit ovat suuria, rakenteeltaan monimutkaisia biomolekyylejä, jotka vastaavat fysiologisista prosesseista kaikissa elävissä organismeissa. Proteiinit toimivat soluissa rakenteellisina yksiköinä, entsyymeinä, kuljettimina, prosessien säätelijöinä sekä signaalinvälittäjinä. Välttämättömien proteiinien toiminnan häiriintyminen ilmenee sairauksina. Usein toimintahäiriöiden taustalla on geneettinen mutaatio, joka muuttaa proteiinin rakennetta. Proteiinit toimivat vuorovaikuttamalla muiden molekyylien kanssa ja kaikki proteiinien toiminnot ovat riippuvaisia niiden rakenteesta. Jotta ymmärtäisimme fysiologisia ja patologisia mekanismeja molekyylitasolla, on meidän tunnettava niihin osallistuvien proteiinien rakenne ja vuorovaikutusmekanismit. Tässä väitöskirjassa on tutkittu ihmisen filamiinien rakennetta ja toimintaa. Filamiinit ovat solun tukirangan aktiinisäikeitä sitovia proteiineja, jotka koostuvat N-terminaalisen osan aktiinia sitovasta domeenista sekä 24 peräkkäisestä immunoglobuliinimaisesta (IgFLN) domeenista. Filamiinit vuorovaikuttavat aktiinin lisäksi lukuisten muiden proteiinien kanssa ja useimmat näistä vuorovaikutuksista on paikannettu C-terminaalisiin IgFLN domeeneihin. Filamiinit osallistuvat solun kiinnittymiseen ja liikkumiseen sekä solukalvon reseptorimolekyylien ja solun sisäisten viestintäreittien koordinointiin. Filamiinimutaatiot aiheuttavat ihmisissä vakavia kehityshäiriöitä ja sairauksia, joiden oireet ilmenevät aivoissa, luustossa, raajoissa sekä sydän- ja verenkiertoelimistössä. Ydinmagneettinen resonanssispekrtroskopia eli NMR-spektroskopia on monipuolinen menetelmä proteiinien rakenteen, vuorovaikutuksen ja dynamiikan tutkimuksessa. Tässä väitöskirjassa NMR-spektroskopiaa hyödynnettiin filamiinin C-terminaalisten IgFLN domeenien rakenteen ja vuorovaikutusmekanismien tutkimuksessa. Työssä ratkaistiin IgFLN domeenien 17 ja 23 sekä IgFLN domeeniparien 16 17 ja 18 19 rakenteet NMR-spektroskopiaa käyttäen. NMR-mittausten avulla selvitettiin myös filamiinin vuorovaikutusta useiden solujen toiminnan kannalta tärkeiden proteiinien kanssa. Väitöskirjassa tutkittiin myös IgFLN domeenisekstetti 16 21:n rakennetta jäännösdipolikytkentöjen ja NMR-relaksaatioanalyysin avulla. Tämä väitöskirja havainnollistaa NMR-spekrtroskopian monipuolisuutta ja mahdollisuuksia monidomeenisten proteiinien rakenteen ja toiminnan tutkimuksessa.
  • Article: Case Report
    [Show abstract] [Hide abstract]
    ABSTRACT: We treated a patient with multiple congenital joint dislocations and facial dysmorphisms consistent with Larsen syndrome. Sequencing of the FLNB gene resulted in identification of a novel, de novo 508G>C point mutation resulting in substitution of proline for a highly conserved alanine (A170P). This mutation has not been described previously but is likely causative because this alanine is highly conserved and is located in the calponin homology domain where other mutations have been described. We also report the successful use of a minimally invasive technique in achieving initial correction of bilateral congenital knee dislocations in this patient. The technique consists of serial manipulations and castings followed by an open quadriceps tenotomy. Longer followup is needed to ensure maintenance of correction and to avoid the need for more extensive surgery, which has been the traditional treatment for congenital knee dislocation associated with Larsen syndrome.
    Clinical Orthopaedics and Related Research 06/2008; 466(6):1503-1509. DOI:10.1007/s11999-008-0196-5 · 2.88 Impact Factor