GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin

Department of Geological Sciences, University of Colorado at Boulder, Boulder, Colorado, United States
Science (Impact Factor: 31.48). 08/2005; 309(5731):118-21. DOI: 10.1126/science.1108575
Source: PubMed

ABSTRACT The Northern Hemisphere hydrological cycle is a key factor coupling ice sheets, ocean circulation, and polar amplification of climate change. Here we present a Northern Hemisphere deuterium excess profile covering one climatic cycle, constructed with the use of delta18O and deltaD Greenland Ice Core Project (GRIP) records. Past changes in Greenland source and site temperatures are quantified with precipitation seasonality taken into account. The imprint of obliquity is evidenced in the site-to-source temperature gradient at orbital scale. At the millennial time scale, GRIP source temperature changes reflect southward shifts of the geographical locations of moisture sources during cold events, and these rapid shifts are associated with large-scale changes in atmospheric circulation.

Download full-text


Available from: James W. C. White, Jun 16, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upon closer inspection, the classical view of the synchronous relationship between tropospheric methane mixing ratio and Greenland temperature observed in ice samples reveals clearly discernable variations in the magnitude of this response during the Late Pleistocene (<50kyr BP). During the Holocene this relationship appears to decouple, indicating that other factors have modulated the methane budget in the past 10kyr BP. The delta13CH4 and deltaD-CH4 of tropospheric methane recorded in ice samples provide a useful constraint on the palaeomethane budget estimations. Anticipated changes in palaeoenvironmental conditions are recorded as changes in the isotope signals of the methane precursors, which are then translated into past global delta13CH4 and deltaD-CH4 signatures. We present the first methane budgets for the late glacial period that are constrained by dual stable isotopes. The overall isotope variations indicate that the Younger Dryas (YD) and Preindustrial Holocene have methane that is 13C- and 2H-enriched, relative to Modern. The shift is small for delta13CH4 (approx. 1 per thousand) but greater for deltaD-CH4 (approx. 9 per thousand). The YD delta13CH4-deltaD-CH4 record shows a remarkable relationship between them from 12.15 to 11.52kyr BP. The corresponding C- and H-isotope mass balances possibly indicate fluctuating emissions of thermogenic gas. This delta13CH4-deltaD-CH4 relationship breaks down during the YD-Preboreal transition. In both age cases, catastrophic releases of hydrates with Archaeal isotope signatures can be ruled out. Thermogenic clathrate releases are possible during the YD period, but so are conventional natural gas seepages.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 07/2007; 365(1856):1793-828. DOI:10.1098/rsta.2007.2048 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a synchronization of the NGRIP, GRIP and GISP2 ice cores onto a master chronology extending back to 104 ka before present, providing a consistent chronological framework for these three Greenland records. The synchronization aligns distinct peaks in volcanic proxy records and other impurity records (chemo-stratigraphic matching) and assumes that these layers of elevated impurity content represent the same, instantaneous event in the past at all three sites. More than 900 marker horizons between the three cores have been identified and our matching is independently confirmed by 24 new and previously identified volcanic ash (tephra) tie-points. Using the reference horizons, we transfer the widely used Greenland ice-core chronology, GICC05modelext, to the two Summit cores, GRIP and GISP2. Furthermore, we provide gas chronologies for the Summit cores that are consistent with the GICC05modelext timescale by utilizing both existing and new gas data (CH4 concentration and δ15N of N2). We infer that the accumulation contrast between the stadial and interstadial phases of the glacial period was ∼10% greater at Summit compared to at NGRIP. The δ18O temperature-proxy records from NGRIP, GRIP, and GISP2 are generally very similar and display synchronous behaviour at climate transitions. The δ18O differences between Summit and NGRIP, however, changed slowly over the Last Glacial-Interglacial cycle and also underwent abrupt millennial-to-centennial-scale variations. We suggest that this observed latitudinal δ18O gradient in Greenland during the glacial period is the result of 1) relatively higher degree of precipitation with a Pacific signature at NGRIP, 2) increased summer bias in precipitation at Summit, and 3) enhanced Rayleigh distillation due to an increased source-to-site distance and a potentially larger source-to-site temperature gradient. We propose that these processes are governed by changes in the North American Ice Sheet (NAIS) volume and North Atlantic sea-ice extent and/or sea-surface temperatures (SST) on orbital timescales, and that changing sea-ice extent and SSTs are the driving mechanisms on shorter timescales. Finally, we observe that maxima in the Summit-NGRIP δ18O difference are roughly coincident with prominent Heinrich events. This suggests that the climatic reorganization that takes place during stadials with Heinrich events, possibly driven by a southward expansion of sea ice and low SSTs in the North Atlantic, are recorded in the ice-core records.
    Quaternary Science Reviews 11/2014; 106. DOI:10.1016/j.quascirev.2014.10.032 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This discussion paper, by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommision on Quaternary Stratigraphy (SQS) of the International Commission on Stratigraphy (ICS), considers the prospects for a formal subdivision of the Holocene Series/Epoch. Although previous attempts to subdivide the Holocene have proved inconclusive, recent developments in Quaternary stratigraphy, notably the definition of the Pleistocene–Holocene boundary and the emergence of formal subdivisions of the Pleistocene Series/Epoch, mean that it may be timely to revisit this matter. The Quaternary literature reveals a widespread but variable informal usage of a tripartite division of the Holocene (‘early’, ‘middle’ or ‘mid’, and ‘late’), and we argue that this de facto subdivision should now be formalized to ensure consistency in stratigraphic terminology. We propose an Early–Middle Holocene Boundary at 8200 a BP and a Middle–Late Holocene Boundary at 4200 a BP, each of which is linked to a Global Stratotype Section and Point (GSSP). Should the proposal find a broad measure of support from the Quaternary community, a submission will be made to the International Union of Geological Sciences (IUGS), via the SQS and the ICS, for formal ratification of this subdivision of the Holocene Series/Epoch. Copyright © 2012 John Wiley & Sons, Ltd.
    Journal of Quaternary Science 10/2012; 27(7):649-659. DOI:10.1002/jqs.2565 · 2.66 Impact Factor