Galanis, E. et al. North Central Cancer Treatment Group. Phase II trail of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol. 23, 5294-5304

Johns Hopkins University, Baltimore, Maryland, United States
Journal of Clinical Oncology (Impact Factor: 18.43). 08/2005; 23(23):5294-304. DOI: 10.1200/JCO.2005.23.622
Source: PubMed


Temsirolimus (CCI-779) is a small-molecule inhibitor of the mammalian target of rapamycin (mTOR) and represents a rational therapeutic target against glioblastoma multiforme (GBM).
Recurrent GBM patients with < or = 1 chemotherapy regimen for progressive disease were eligible. Temsirolimus was administered in a 250-mg intravenous dose weekly.
Sixty-five patients were treated. The incidence of grade 3 or higher nonhematologic toxicity was 51%, and consisted mostly of hypercholesterolemia (11%), hypertriglyceridemia (8%), and hyperglycemia (8%). Grade 3 hematologic toxicity was observed in 11% of patients. Temsirolimus peak concentration (Cmax), and sirolimus Cmax and area under the concentration-time curve were decreased in patients receiving p450 enzyme-inducing anticonvulsants (EIACs) by 73%, 47%, and 50%, respectively, but were still within the therapeutic range of preclinical models. Twenty patients (36%) had evidence of improvement in neuroimaging, consisting of decrease in T2 signal abnormality +/- decrease in T1 gadolinium enhancement, on stable or reduced steroid doses. Progression-free survival at 6 months was 7.8% and median overall survival was 4.4 months. Median time to progression (TTP) for all patients was 2.3 months and was significantly longer for responders (5.4 months) versus nonresponders (1.9 months). Development of grade 2 or higher hyperlipidemia in the first two treatment cycles was associated with a higher percentage of radiographic response (71% v 31%; P = .04). Significant correlation was observed between radiographic improvement and high levels of phosphorylated p70s6 kinase in baseline tumor samples (P = .04).
Temsirolimus is well tolerated in recurrent GBM patients. Despite the effect of EIACs on temsirolimus metabolism, therapeutic levels were achieved. Radiographic improvement was observed in 36% of temsirolimus-treated patients, and was associated with significantly longer TTP. High levels of phosphorylated p70s6 kinase in baseline tumor samples appear to predict a patient population more likely to derive benefit from treatment. These findings should be validated in other studies of mTOR inhibitors.

6 Reads
  • Source
    • "Further predictive response stratification may be possible through baseline measurements of downstream mTOR activators such as s6 kinase (96). Similarly in GBM patients, levels of phosphorylated Akt have been shown to be predictive of clinical response to erlotinib in EGFR amplified tumors (97, 98). "
    [Show abstract] [Hide abstract]
    ABSTRACT: It is increasingly clear that both adult and pediatric glial tumor entities represent collections of neoplastic lesions, each with individual pathological molecular events and treatment responses. In this review, we discuss the current prognostic biomarkers validated for clinical use or with future clinical validity for gliomas. Accurate prognostication is crucial for managing patients as treatments may be associated with high morbidity and the benefits of high risk interventions must be judged by the treating clinicians. We also review biomarkers with predictive validity, which may become clinically relevant with the development of targeted therapies for adult and pediatric gliomas.
    Frontiers in Oncology 03/2014; 4:47. DOI:10.3389/fonc.2014.00047
  • Source
    • "Inhibition of the pathway using rapamycin resulted in paradoxical activation of Akt through loss of negative feedback in a subset of patients, which in turn was related to shorter time-to-progression during postsurgical maintenance rapamycin therapy [24]. The limited single-agent activity of rapamycin analogs in several GBM trials [25,26] provides a rationale for ongoing clinical trials with dual PI3K/mTOR inhibitors in GBM. A clinical trial of a dual PI3K/m-TOR inhibitor, XL765, in combination with TMZ is currently underway for GBM [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite aggressive treatment with radiation therapy and concurrent adjuvant temozolomide (TMZ), glioblastoma multiform (GBM) still has a dismal prognosis. We aimed to identify strategies to improve the therapeutic outcome of combined radiotherapy and TMZ in GBM by targeting pro-survival signaling from the epidermal growth factor receptor (EGFR). Glioma cell lines U251, T98G were used. Colony formation, DNA damage repair, mode of cell death, invasion, migration and vasculogenic mimicry as well as protein expression were determined. U251 cells showing a low level of methyl guanine transferase (MGMT) were highly responsive to the radiosensitizing effect of TMZ compared to T98G cells having a high level of MGMT. Treatment with a dual inhibitor of Class I PI3K/mTOR, PI103; a HSP90 inhibitor, 17-DMAG; or a HDAC inhibitor, LBH589, further increased the cytotoxic effect of radiation therapy plus TMZ in U251 cells than in T98G cells. However, treatment with a mTOR inhibitor, rapamycin, did not discernibly potentiate the radiosensitizing effect of TMZ in either cell line. The mechanism of enhanced radiosensitizing effects of TMZ was multifactorial, involving impaired DNA damage repair, induction of autophagy or apoptosis, and reversion of EMT (epithelial-mesenchymal transition). Our results suggest possible strategies for counteracting the pro-survival signaling from EGFR to improve the therapeutic outcome of combined radiotherapy and TMZ for high-grade gliomas.
    BMC Cancer 01/2014; 14(1):17. DOI:10.1186/1471-2407-14-17 · 3.36 Impact Factor
  • Source
    • "However, the use of a single agent for newly diagnosed or recurrent GBM does not effectively improve treatment efficacy [3, 10]. In previous clinical studies, monotherapy using temsirolimus (CCI-779), a small-molecule inhibitor of the mammalian target of rapamycin (mTOR), was found to promote 6-month progression-free survival (PFS6) rates of 2.3–7.8% in phase II trials [11, 12]. The standard therapy of adding the adjuvant sorafenib to the treatment of newly diagnosed GBM patients also does not improve treatment efficacy [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M) is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.
    Evidence-based Complementary and Alternative Medicine 11/2013; 2013:394636. DOI:10.1155/2013/394636 · 1.88 Impact Factor
Show more